Genomics and precision medicine in pediatric acute lymphoblastic leukemia

Raoul Santiago , Thai Hoa Tran

Journal of Translational Genetics and Genomics ›› 2021, Vol. 5 ›› Issue (4) : 380 -95.

PDF
Journal of Translational Genetics and Genomics ›› 2021, Vol. 5 ›› Issue (4) :380 -95. DOI: 10.20517/jtgg.2021.16
review-article

Genomics and precision medicine in pediatric acute lymphoblastic leukemia

Author information +
History +
PDF

Abstract

Acute lymphoblastic leukemia (ALL) is the most frequent malignant disease in the pediatric population, accounting for about 25% of childhood cancers. Drastic therapeutic improvements have been made for pediatric ALL since the early 1960s, marking the most successful treatment paradigm in pediatric oncology. The clinical success derived from refined risk-adapted therapy based on presenting features, cytogenetics and minimal residual disease, prevention of central nervous system relapse, and improvement of supportive care measures. With contemporary therapies, survival of children with ALL now exceeds 90%. However, ALL represents one of leading causes of cancer-related death, as 15%-20% of patients continue to relapse and outcomes post-relapse remain poor. Since the early 2000s, large-scale genomic studies of ALL, greatly facilitated by the advent of next generation sequencing (NGS), have enabled the development of a novel taxonomy for ALL in the molecular era. The access to NGS technologies identifies novel ALL subsets characterized by “driver” oncogenic alterations, previously cryptic on conventional karyotyping methods. With genomic characterization, the group of formerly unclassified B-lineage ALL reduces from 25% to a marginal 5% of ALL. The revised molecular classification of ALL confers prognostic significance and describes the predilection of unfavorable ALL subtypes with increasing age, partially elucidating the worst outcome of adolescents and young adults with ALL. Large-scale genomic analysis also reveals inherited alterations predisposing to ALL occurrence or to different drugs’ sensitivities. Most importantly, the genomic portrait of ALL uncovers novel therapeutic vulnerabilities, paving the way towards precision medicine opportunities in ALL.

Keywords

Acute lymphoblastic leukemia / childhood leukemia / genomics / precision medicine / targeted therapies

Cite this article

Download citation ▾
Raoul Santiago, Thai Hoa Tran. Genomics and precision medicine in pediatric acute lymphoblastic leukemia. Journal of Translational Genetics and Genomics, 2021, 5(4): 380-95 DOI:10.20517/jtgg.2021.16

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HungerSP,DevidasM.Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group.J Clin Oncol2012;30:1663-9 PMCID:PMC3383113

[2]

PuiCH,HungerSP.childhood acute lymphoblastic leukemia: progress through collaboration.J Clin Oncol2015;33:2938-48 PMCID:PMC4567699

[3]

SantiagoR,SinnettD,BittencourtH.Novel therapy for childhood acute lymphoblastic leukemia.Expert Opin Pharmacother2017;18:1081-99

[4]

SmithM,CamittaB.Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia.J Clin Oncol1996;14:18-24

[5]

HarrisonCJ,SchwabC,MullighanC. Cytogenetics and molecular genetics. In: Vora A, editor. Childhood acute lymphoblastic leukemia. Cham: Springer International Publishing; 2017. p. 61-98.

[6]

SchultzKR,SatherHN.Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG).Blood2007;109:926-35 PMCID:PMC1785141

[7]

VroomanLM,HarrisMH.Refining risk classification in childhood B acute lymphoblastic leukemia: results of DFCI ALL Consortium Protocol 05-001.Blood Adv2018;2:1449-58 PMCID:PMC6020806

[8]

TasianSK.Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine therapeutics.Br J Haematol2017;176:867-82 PMCID:PMC5352516

[9]

MullighanCG.How advanced are we in targeting novel subtypes of ALL?.Best Pract Res Clin Haematol2019;32:101095 PMCID:PMC6927537

[10]

TranTH.The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities.Semin Cancer Biol2020;S1044-579X(20)30218

[11]

GuZ,RobertsKG.PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia.Nat Genet2019;51:296-307 PMCID:PMC6525306

[12]

YeohE,ShurtleffSA.Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling.Cancer Cell2002;1:133-43

[13]

KangH,WilsonCS.Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia.Blood2010;115:1394-405 PMCID:PMC2826761

[14]

HarveyRC,WangX.Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome.Blood2010;116:4874-84 PMCID:PMC3321747

[15]

Den BoerML,De MenezesRX.A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study.Lancet Oncol2009;10:125-34 PMCID:PMC2707020

[16]

MullighanCG,ZhangJ.Children's Oncology GroupDeletion of IKZF1 and prognosis in acute lymphoblastic leukemia.N Engl J Med2009;360:470-80 PMCID:PMC2674612

[17]

HarveyRC,ChenIM.Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia.Blood2010;115:5312-21 PMCID:PMC2902132

[18]

LohML,HarveyRC.Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project.Blood2013;121:485-8 PMCID:PMC3548168

[19]

RobertsKG,Payne-TurnerD.Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia.N Engl J Med2014;371:1005-15 PMCID:PMC4191900

[20]

TranTH.Ph-like acute lymphoblastic leukemia.Hematology Am Soc Hematol Educ Program2016;2016:561-6 PMCID:PMC6142516

[21]

IacobucciI,CilloniD.Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP).Blood2009;114:2159-67

[22]

VairyS.IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly.Blood Rev2020;44:100677

[23]

TranTH,NguyenJV.Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-lineage acute lymphoblastic leukemia.Blood Adv2018;2:529-33 PMCID:PMC5851421

[24]

ChenIM,MullighanCG.Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group study.Blood2012;119:3512-22 PMCID:PMC3325039

[25]

StanullaM,ZaliovaM.TRANSCALL ConsortiumInternational BFM Study GroupIKZF1plus defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia.J Clin Oncol2018;36:1240-9

[26]

ZhangJ,YoshiharaH.StJude Children's Research Hospital-Washington University Pediatric Cancer Genome Project. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia.Nat Genet2016;48:1481-9 PMCID:PMC5144107

[27]

LilljebjörnH,Hyrenius-WittstenA.Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia.Nat Commun2016;7:11790 PMCID:PMC4897744

[28]

ClappierE,RapionJ.An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions.Leukemia2014;28:70-7

[29]

ZaliovaM,DörgeP.ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1 deletion in childhood acute lymphoblastic leukemia.Leukemia2014;28:182-5

[30]

ZaliovaM,BresolinS.ETV6/RUNX1-like acute lymphoblastic leukemia: A novel B-cell precursor leukemia subtype associated with the CD27/CD44 immunophenotype.Genes Chromosomes Cancer2017;56:608-16

[31]

LiJF,LilljebjörnH.Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases.Proc Natl Acad Sci U S A2018;115:E11711-20 PMCID:PMC6294900

[32]

LiuYF,ZhangWN.Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia.EBioMedicine2016;8:173-83 PMCID:PMC4919728

[33]

GuZ,RobertsK.Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia.Nat Commun2016;7:13331 PMCID:PMC5105166

[34]

HirabayashiS,NakabayashiK.Tokyo Children’s Cancer Study Group (TCCSG)ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype.Haematologica2017;102:118-29 PMCID:PMC5210242

[35]

AlexanderTB,IacobucciI.The genetic basis and cell of origin of mixed phenotype acute leukaemia.Nature2018;562:373-9 PMCID:PMC6195459

[36]

FazioG,De LorenzoP.Recurrent genetic fusions redefine MLL germ line acute lymphoblastic leukemia in infants.Blood2021;137:1980-4

[37]

AifantisI,BuonamiciS.Molecular pathogenesis of T-cell leukaemia and lymphoma.Nat Rev Immunol2008;8:380-90

[38]

Coustan-smithE,OnciuM.Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia.Lancet Oncol2009;10:147-56 PMCID:PMC2840241

[39]

ZhangJ,HolmfeldtL.The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.Nature2012;481:157-63 PMCID:PMC3267575

[40]

PatrickK,GouldenN.Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003.Br J Haematol2014;166:421-4

[41]

WoodBL,DunsmoreKP.T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s Oncology Group (COG) Study AALL0434.Blood2014;124:1

[42]

LiuY,ShaoY.The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia.Nat Genet2017;49:1211-8 PMCID:PMC5535770

[43]

GirardiT,CoolsJ.The genetics and molecular biology of T-ALL.Blood2017;129:1113-23 PMCID:PMC5363819

[44]

WengAP,LeeW.Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia.Science2004;306:269-71

[45]

Van VlierbergheP.The molecular basis of T cell acute lymphoblastic leukemia.J Clin Invest2012;122:3398-406 PMCID:PMC3461904

[46]

MaudeSL,Delgado-MartinC.Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia.Blood2015;125:1759-67 PMCID:PMC4357583

[47]

NeumannM,FranseckyL.FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors.PLoS One2013;8:e53190 PMCID:PMC3554732

[48]

WaandersE,DobsonSM.Mutational landscape and patterns of clonal evolution in relapsed pediatric acute lymphoblastic leukemia.Blood Cancer Discov2020;1:96-111 PMCID:PMC7418874

[49]

MaX,YergeauD.Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia.Nat Commun2015;6:6604 PMCID:PMC4377644

[50]

MullighanCG,SuX.Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia.Science2008;322:1377-80 PMCID:PMC2746051

[51]

LiB,MaX.Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia.Blood2020;135:41-55 PMCID:PMC6940198

[52]

SchroederMP,EckertC.Integrated analysis of relapsed B-cell precursor Acute Lymphoblastic Leukemia identifies subtype-specific cytokine and metabolic signatures.Sci Rep2019;9:4188 PMCID:PMC6414622

[53]

LiB,BaiY.Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL.Nat Med2015;21:563-71 PMCID:PMC4670083

[54]

MeyerJA,HoganLE.Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia.Nat Genet2013;45:290-4 PMCID:PMC3681285

[55]

MullighanCG,KasperLH.CREBBP mutations in relapsed acute lymphoblastic leukaemia.Nature2011;471:235-9 PMCID:PMC3076610

[56]

TreviñoLR,FrenchD.Germline genomic variants associated with childhood acute lymphoblastic leukemia.Nat Genet2009;41:1001-5 PMCID:PMC2762391

[57]

WhitlockJA.Down syndrome and acute lymphoblastic leukaemia.Br J Haematol2006;135:595-602

[58]

RippergerT.Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome.Eur J Med Genet2016;59:133-42

[59]

BrownAL,GantVU.Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome.Blood2019;134:1227-37 PMCID:PMC6788009

[60]

MaloneyKW,CarrollAJ.Down syndrome childhood acute lymphoblastic leukemia has a unique spectrum of sentinel cytogenetic lesions that influences treatment outcome: a report from the Children's Oncology Group.Blood2010;116:1045-50 PMCID:PMC2938126

[61]

MullighanCG,PhillipsLA.Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia.Nat Genet2009;41:1243-6 PMCID:PMC2783810

[62]

RabinKR,ChenZ.Outcomes of patients with Down syndrome and CRLF2 -overexpressing acute lymphoblastic leukemia (ALL): a report from the Children's Oncology Group (COG).Blood2020;136:44-5

[63]

GochoY.Genetic defects in hematopoietic transcription factors and predisposition to acute lymphoblastic leukemia.Blood2019;134:793-7 PMCID:PMC6729010

[64]

HolmfeldtL,Diaz-FloresE.The genomic landscape of hypodiploid acute lymphoblastic leukemia.Nat Genet2013;45:242-52 PMCID:PMC3919793

[65]

MoriyamaT,YangJJ.Inherited genetic variation in childhood acute lymphoblastic leukemia.Blood2015;125:3988-95 PMCID:PMC4481591

[66]

ChurchmanML,Te KronnieG.Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia.Cancer Cell2018;33:937-48.e8 PMCID:PMC5953820

[67]

Perez-AndreuV,HarveyRC.Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse.Nat Genet2013;45:1494-8 PMCID:PMC4039076

[68]

WalshKM,ChokkalingamAP.Novel childhood ALL susceptibility locus BMI1-PIP4K2A is specifically associated with the hyperdiploid subtype.Blood2013;121:4808-9 PMCID:PMC3674678

[69]

EllinghausE,RichterG.Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia.Leukemia2012;26:902-9 PMCID:PMC3356560

[70]

YangJJ,YangW.Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia.J Clin Oncol2015;33:1235-42 PMCID:PMC4375304

[71]

MaudeSL,BuechnerJ.Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia.N Engl J Med2018;378:439-48 PMCID:PMC5996391

[72]

O'brienMM,ShahNN.A Phase 2 Trial of inotuzumab ozogamicin (InO) in children and young adults with relapsed or refractory (R/R) CD22+ B-acute lymphoblastic leukemia (B-ALL): results from Children's Oncology Group Protocol AALL1621.Blood2019;134:741

[73]

BrownPA,XuX.Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial.JAMA2021;325:833-42 PMCID:PMC7926290

[74]

AricòM,HungerSP.Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005.J Clin Oncol2010;28:4755-61 PMCID:PMC3020705

[75]

BiondiA,De LorenzoP.Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): a prospective, intergroup, open-label, single-arm clinical trial.Lancet Haematol2018;5:e641-52

[76]

SchultzKR,HeeremaNA.Children’s Oncology GroupLong-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children's Oncology Group study AALL0031.Leukemia2014;28:1467-71 PMCID:PMC4282929

[77]

SchultzKR,AledoA.Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study.J Clin Oncol2009;27:5175-81 PMCID:PMC2773475

[78]

BiondiA,De LorenzoP.Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study.Lancet Oncol2012;13:936-45 PMCID:PMC3431502

[79]

HungerSP,DevidasM.CA180-372: An International Collaborative Phase 2 Trial of dasatinib and chemotherapy in pediatric patients with newly diagnosed philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL).Blood2017;130:98-98

[80]

SlaytonWB,KairallaJA.Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with philadelphia chromosome-positive acute lymphoblastic leukemia: results of Children's Oncology Group Trial AALL0622.J Clin Oncol2018;36:2306-14 PMCID:PMC6067800

[81]

ShenS,CaiJ.Effect of dasatinib vs imatinib in the treatment of pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: a randomized clinical trial.JAMA Oncol2020;6:358-66 PMCID:PMC6990720

[82]

FoàR,VitaleA.GIMEMA InvestigatorsDasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults.N Engl J Med2020;383:1613-23

[83]

RobertsKG,ZhangJ.Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia.Cancer Cell2012;22:153-66 PMCID:PMC3422513

[84]

MaudeSL,VincentT.Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia.Blood2012;120:3510-8 PMCID:PMC3482861

[85]

TasianSK,BorowitzMJ.Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia.Blood2012;120:833-42 PMCID:PMC3412346

[86]

TanasiI,SirventN.Efficacy of tyrosine kinase inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL-class rearrangements.Blood2019;134:1351-5

[87]

DingYY,JubelirerTF.Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with GOLGA5-JAK2 fusion and induction failure.Haematologica2018;103:e427-31 PMCID:PMC6119161

[88]

CarioG,ConterV.Relapses and treatment-related events contributed equally to poor prognosis in children with ABL-class fusion positive B-cell acute lymphoblastic leukemia treated according to AIEOP-BFM protocols.Haematologica2020;105:1887-94 PMCID:PMC7327633

[89]

RobertsKG,ZhaoY.ETV6-NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition.Blood2018;132:861-5 PMCID:PMC6107883

[90]

NardiV,FrigaultMJ.Clinical response to larotrectinib in adult Philadelphia chromosome-like ALL with cryptic ETV6-NTRK3 rearrangement.Blood Adv2020;4:106-11 PMCID:PMC6960464

[91]

TranTH,SteculaA.The EBF1-PDGFRB T681I mutation is highly resistant to imatinib and dasatinib in vitro and detectable in clinical samples prior to treatment.Haematologica2021;

[92]

ChurchmanML,QuC.Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia.Cancer Cell2015;28:343-56 PMCID:PMC4573904

[93]

ChurchmanML,RichmondJ.Synergism of FAK and tyrosine kinase inhibition in Ph+ B-ALL.JCI Insight2016;1:86082 PMCID:PMC4844070

[94]

Diaz-FloresE,KimKL.Bcl-2 is a therapeutic target for hypodiploid B-lineage acute lymphoblastic leukemia.Cancer Res2019;79:2339-51 PMCID:PMC6497548

[95]

GriffithM,KrysiakK.Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia.Exp Hematol2016;44:603-13 PMCID:PMC4914477

[96]

HabetsRA,SerneelsL.Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition.Sci Transl Med2019;11:eaau6246

[97]

YuanT,ChenJ.Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD.Leukemia2017;31:2355-64 PMCID:PMC5986278

[98]

Alonso-AlonsoR,MartínezN.Identification of tipifarnib sensitivity biomarkers in T-cell acute lymphoblastic leukemia and T-cell lymphoma.Sci Rep2020;10:6721 PMCID:PMC7174413

[99]

KhawSL,EvansK.Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia.Blood2016;128:1382-95 PMCID:PMC5016707

[100]

GaussmannA,EberleI.Combined effects of the two reciprocal t(4;11) fusion proteins MLL.AF4 and AF4.MLL confer resistance to apoptosis, cell cycling capacity and growth transformation.Oncogene2007;26:3352-63

[101]

InukaiT,GotoM.Resistance of infant leukemia with MLL rearrangement to tumor necrosis factor-related apoptosis-inducing ligand: a possible mechanism for poor sensitivity to antitumor immunity.Leukemia2006;20:2119-29

[102]

PeirsS,GoossensS.ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia.Blood2014;124:3738-47

[103]

FischerU,RinaldiA.Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options.Nat Genet2015;47:1020-9 PMCID:PMC4603357

[104]

FarhadfarN,MayWS.Venetoclax and decitabine for treatment of relapsed T-cell acute lymphoblastic leukemia: a case report and review of literature.Hematol Oncol Stem Cell Ther2021;14:246-51

[105]

La StarzaR,PieriniA.Venetoclax and bortezomib in relapsed/refractory early T-cell precursor acute lymphoblastic leukemia.JCO Precis Oncol2019;3:PO PMCID:PMC7448796

[106]

KarolSE,BittencourtH.Safety, efficacy, and PK of the BCL2 inhibitor venetoclax in combination with chemotherapy in pediatric and young adult patients with relapsed/refractory acute myeloid leukemia and acute lymphoblastic leukemia: Phase 1 Study.Blood2019;134:2649

[107]

LacayoNJ,StockW.Safety and efficacy of venetoclax in combination with navitoclax in adult and pediatric relapsed/refractory acute lymphoblastic leukemia and lymphoblastic lymphoma.Blood2019;134:285

[108]

KlukMJ,AsterJC.Validation and implementation of a custom next-generation sequencing clinical assay for hematologic malignancies.J Mol Diagn2016;18:507-15 PMCID:PMC5707186

[109]

HarveyRC.Clinical diagnostics and treatment strategies for Philadelphia chromosome-like acute lymphoblastic leukemia.Blood Adv2020;4:218-28 PMCID:PMC6960477

[110]

SchieckM,ThomayK.Implementation of RNA sequencing and array CGH in the diagnostic workflow of the AIEOP-BFM ALL 2017 trial on acute lymphoblastic leukemia.Ann Hematol2020;99:809-18 PMCID:PMC7069912

[111]

InabaH,MullighanCG.Integration of next-generation sequencing to treat acute lymphoblastic leukemia with targetable lesions: the St. Jude Children's Research Hospital Approach.Front Pediatr2017;5:258 PMCID:PMC5722984

AI Summary AI Mindmap
PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/