A new source number estimation method based on the beam eigenvalue

Lei Jiang , Ping Cai , Juan Yang , Yi-ling Wang , Dan Xu

Journal of Marine Science and Application ›› 2007, Vol. 6 ›› Issue (1) : 41 -46.

PDF
Journal of Marine Science and Application ›› 2007, Vol. 6 ›› Issue (1) : 41 -46. DOI: 10.1007/s11804-007-6050-4
Article

A new source number estimation method based on the beam eigenvalue

Author information +
History +
PDF

Abstract

Most source number estimation methods based on the eigenvalues are decomposed by covariance matrix in MUSIC algorithm. To develop the source number estimation method which has lower signal to noise ratio and is suitable to both correlated and uncorrelated impinging signals, a new source number estimation method called beam eigenvalue method (BEM) is proposed in this paper. Through analyzing the space power spectrum and the correlation of the line array, the covariance matrix is constructed in a new way, which is decided by the line array shape when the signal frequency is given. Both of the theory analysis and the simulation results show that the BEM method can estimate the source number for correlated signals and can be more effective at lower signal to noise ratios than the normal source number estimation methods.

Keywords

source number estimation / DOA estimation / beam eigenvalue / MUSIC

Cite this article

Download citation ▾
Lei Jiang, Ping Cai, Juan Yang, Yi-ling Wang, Dan Xu. A new source number estimation method based on the beam eigenvalue. Journal of Marine Science and Application, 2007, 6(1): 41-46 DOI:10.1007/s11804-007-6050-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Y., Chen H., Peng Y., Wan Q. The spatial spectrum estimation theory and Algorithm[M]. 2004, Beijing: The Tsinghua University Press

[2]

Wax M., Kailath T. Detection of signals by Information theoretic criteria[J]. IEEE Trans on ASSP, 1985, 33(2): 387-392

[3]

Wax M., Ziskind I. Detection of the number of coherent signals by the MDL principle[J]. IEEE Trans on ASSP, 1989, 37(8): 1190-1196

[4]

Zhao L. C., Krishnaiah P. R., Bai Z. D. On detection of numbers of signals in presence of white noise[J]. J Multivariate Anal, 1986, 20: 1-25

[5]

Zhao L. C., Krishnaiah P. R., Bai Z. D. On detection of numbers of signals when the noise covariance matrix is arbitrary[J]. J Multivariate Anal, 1986, 20: 26-49

[6]

Shan T. J., Paylray A., Kailath T. On smoothed rand profile tests in eigen structure methods for directions-of-arrival estimation[J]. IEEE Trans on ASSP, 1987, 35(10): 1377-1385

[7]

Cozzens J. H., Sousa M. J. Source enumeration in a correlate signed environments[J]. IEEE Trans on SP, 1994, 42(2): 304-317

[8]

Di A. Multiple sources location-a matrix decomposition approach[J]. IEEE Trans on ASSP, 1985, 35(4): 1086-1091

[9]

Wu H. T., Yang J. F., Chen F. K. Source number estimator using gerschgorin disks[A]. Proc ICASSP[C]. 1994, Australia: Adelaide

[10]

Wu H. T., Yang J. F., Chen F. K. Source number estimation using transformed gerschgorin radii[J]. IEEE Trans on SP, 1995, 43(6): 1325-1333

[11]

Chen W., Reilly J. P. Detection of the number of signals in noise with banded covariance matrices[J]. IEEE Trans on SP, 1992, 42(5): 377-380

[12]

Wong K. M., Wu Q., Stocia P. Generalized correlation decomposition applied to array processing in unknown noise environments[M]. 1995, NJ: Prentice Hall Inc

[13]

LUO Jingqing, ZHANG Zhiguo. Using eigenvalue grads method to estimate the number of signal source[A]. Proceedings of ICSP2000[C]. Beijing, 2000.

[14]

Zoltowski M. D., Kautz G. M., Silverstein S. D. Beamspace Root-music[J]. IEEE Trans on SP, 1993, 41(1): 344-364

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/