2025-04-25 2015, Volume 22 Issue 9

  • Select all
  • Xiao-hong Yuan , Shan-ju Zheng , Mao-sheng Yang , Kun-yu Zhao

    The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 °C to 1080 °C with strain rate of 1-20 s-1. The activation energy (Q) for the tested steel is calculated to be around 682.99 kJ/mol at a deformation strain of 0.6. Microstructural analysis by SEM shows that the dynamic recrystallization (DRX) behavior is dependent sensitively on the deformation strain, temperature and strain rate, while an exponential relationship between DRX grain size and Z parameter is obtained from the computational formula. Moreover, the M6C-type carbides (<1 μm) act as the main prohibitor of grain coarsening, and the polynomial regression relationship between them is worked out. With electron backscatter diffraction (EBSD) observation, DRX is the main nucleation mechanism responsible for the formation of new grains during hot compression. In conclusion, the interaction between DRX affected by hot deformation parameters and carbides precipitation determines the ultimate grain size refinement.

  • Xia-wei Yang , Wen-ya Li , Tie-jun Ma

    Finite element simulation of linear friction welding (LFW) medium carbon steel was carried out using the ABAQUS software. A two-dimensional (2D) coupled thermo-mechanical model was established. First, the temperature fields of medium carbon steel during LFW process were investigated. And then, the Mises stress and the 1st, 2nd and 3rd principal stresses fields’ evolution of the steel during LFW process were studied. The deformation behavior of LFW carbon steel was analyzed by using micromechanics model based on ABAQUS with Python code. The Lode parameter was expressed using the Mohr stress circle and it was investigated in detail.

  • Yu-dong Fu , Shi-yang Wang , Xiao-shuo Zhu , Bo Fang , Feng Yan

    The NdFeB/Co multilayer films were prepared by magnetron sputtering. After that, the samples were annealed at 600 °C for 20 min. The surface morphology, phase structures and magnetic properties of Mo (50 nm)/[NdFeB (100 nm)/Co(y)]×10/Mo (50 nm) thin films were researched by AFM, XRD and VSM, respectively. The results show that the films show stronger perpendicular magnetic anisotropy. When the thickness of Co layers is 10 nm, the coercivity Hc⊥ is the maximum, 295 kA/m. However, for y=10-20, the reduced remanence M/Ms of films has increased. When the thickness of Co layers is 20-30 nm, the NdFeB/Co multilayer films obtained more superior magnetic properties with M/Ms =0.95.

  • Jie Zhou , Fang Zhuo , Lei Huang , Yan Luo

    To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental (CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model (RSM) was set up and the results of the analysis of variance (ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the “trial and error” procedure.

  • Ling-xiang Guo , Jing Guan , Bao-ping Lin , Hong Yang

    The matrix polymer PTBCHNB bearing o-nitrobenzyl group was successfully synthesized by copolymerization of tertiary-butyl methacrylate (TBMA), cyclohexyl methacrylate (CHMA) and o-nitrobenzyl methacrylate (NBMA) via reversible addition fragmentation chain transfer (RAFT) polymerization method. PTBCHNB was characterized by FTIR, 1HNMR, GPC and DSC. After UV irradiation, the o-nitrobenzyl groups of PTBCHNB were photocleaved and the resulting carboxyl groups were highly alkali soluble, and PTBCHNB was converted to PCHIBMA bearing carboxyl groups. So, the matrix polymer could be etched by mild alkali solution with no requirements of photoacid generators and other diverse additives. The photocleavable behaviors of PTBCHNB were determined by FTIR, 1H NMR and TGA analysis. The resist formulated with PTBCHNB and cast in THF solution showed square pattern of 10 μm×10 μm using a mercury-xenon lamp in a contact printing mode and tetramethyl-ammonium hydroxide aqueous solution as a developer.

  • Jagannath Pal , Satadal Ghorai , Bikash Nandi , Tapas Chakraborty , Goutam Das , T. Venugopalan

    Pelletization of hematite ore requires high fineness and very high induration temperature (~1325 °C) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high reduction degradation index (RDI) during low temperature (500–650 °C) reduction due to their volume expansion and lattice distortion. Noamundi (India) hematite ore contains very high Al2O3 (2.3%) with adverse ratio of alumina to silica (~2) for which, it shows very high RDI. In this work, the acid pellets prepared from Noamundi ore fines of optimum Blaine fineness show good cold crushing strength (CCS). However, it shows very high RDI (77%). In order to reduce RDI, MgO in form of two different gangue-containing fluxes, such as pyroxenite and olivine in varying quantities has been added. The optimum requirement and performance of these fluxes has been examined and compared. Both pyroxenite and olivine fluxed pellets show significant lowering of RDI (26% and 23%, respectively) and improvement of other properties, viz CCS, swelling indices etc with good reducibility (70%–77%). Finally, a good quality acidic hematite pellet was developed from high-alumina ore without using any lime which is very important charge material in combination of basic sinter in blast furnace.

  • Wei Wang , Chun-yi Tong , Xing-yan Liu , Tao Li , Bin Liu , Wei Xiong

    Folic acid conjugated chitosan was prepared by cross-linking reaction with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), and then used as a template to prepare folic acid-chitosan (FA–CS) conjugated nanoparticles and load mitoxantrone nanoparticles (FA-CSNP/MTX). Drug dissolution testing, CCK-8 method, and confocal microscopy were used to detect their controlled-release capability in different situations and the specific uptake by HONE1 cells. The experimental results show that the nanoparticles have uniform size distribution of 48–58 nm. The highest encapsulation rate of the particles on mitoxantrone hydrochloride (MTX) is (77.5±1.9)%, and the drug loading efficiency is (18.4±0.4)%. The sustained release effect, cell growth inhibition activity and targeting effect of the FA-CS/MTX nanoparticles are good in artificial gastric fluid and intestinal fluid. It is demonstrated that the FA-CSNP system is a potentially useful system for the targeted delivery of anticancer drug MTX.

  • Jun Wang , Ming-hao Hu , Hong-bo Zhao , Lang Tao , Xiao-wen Gan , Wen-qing Qin , Guan-zhou Qiu

    For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal pH value of pre-leaching of 0.8; the pH values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5–8 mm, 5–15 mm and 5–20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 ºC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as pH of pre-leaching of 0.8, particles size of 5–15 mm, temperature of 35 °C, spray intensity of 15 L/(h·m2), and strain consortium C3.

  • Jun-zhou Huo , Xiao-long Sun , Guang-qing Li , Tao Li , Wei Sun

    When the tunneling boring machine (TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The structure of disc cutter contains many joint interfaces among cutter ring, cutter body, bearings and cutter shaft. On account of the coupling for dynamic contact and the transfer path among joint interface, mechanical behavior of disc cutter becomes extremely complex under the impact of heavy-duty, which puts forward higher requirements for disc cutter design. A multi-degree-of-freedom coupling dynamic model, which contains a cutter ring, a cutter body, two bearings and cutter shaft, is established, considering the external stochastic excitations, bearing nonlinear contact force, multidirectional mutual coupling vibration, etc. Based on the parameters of an actual project and the strong impact external excitations, the modal properties and dynamic responses are analyzed, as well as the cutter shaft and bearings’ loads and load transmission law are obtained. Numerical results indicate the maximum radial and axial cutter ring amplitudes of dynamic responses are 0.568 mm and 0.112 mm; the maximum radial and axial vibration velocities are 41.1 mm/s and 38.9 mm/s; the maximum radial and axial vibration accelerations are 94.7 m/s2 and 58.6 m/s2; the maximum swing angle and angular velocity of cutter ring are 0.007° and 0.0074 rad/s, respectively. Finally, the maximum load of bearing roller is 40.3 kN. The proposed research lays a foundation for structure optimization design of disc cutter and cutter base, as well as model selection, modification and fatigue life of the cutter bearing.

  • Bo Wang , Zhong-xi Hou , Zheng Guo , Xian-zhong Gao

    A novel method for estimating the space range of battery-powered vertical take-off and landing (VTOL) aircraft is presented. The method is based on flight parameter optimization and numerical iteration. Subsystem models including required thrust, required power and battery discharge models are presented. The problem to be optimized is formulated, and then case study simulation is conducted using the established method for quantitative analysis. Simulation results show that the space range of battery-powered VTOL aircraft in a vertical plane is an oblate curve, which appears horizontally long but vertically short, and the peak point is not located on the vertical climb path. The method and results are confirmed by parameter analysis and validations.

  • Fu-dong Gao , Yan-yan Han , Hai-dong Wang , Nan Xu

    As the mission needs of the autonomous underwater vehicles (AUV) have become increasingly varied and complex, the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which promotes the progress of key technologies and proposes a series of technical problems. Therefore, it is necessary to make systemic analysis and in-depth study for the progress of AUV’s key technologies and innovative applications. The multi-functional mission needs and its key technologies involved in complex sea conditions are pointed out through analyzing the domestic and foreign technical programs, functional characteristics and future development plans. Furthermore, the overall design of a multi-moving state AUV is proposed. Then, technical innovations of the key technologies, such as thrust vector, propeller design, kinematics and dynamics, navigation control, and ambient flow field characteristics, are made, combining with the structural characteristics and motion characteristics of the new multi-moving state AUV. The results verify the good performance of the multi-moving state AUV and provide a theoretical guidance and technical support for the design of new AUV in real complex sea conditions.

  • Qiang Zhai , Ke Yan , You-yun Zhang , Yong-sheng Zhu , Ya-tai Wang

    The vortex formed around the rolling ball and the high pressure region formed around the ball–raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil–air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.

  • Ming-ming Xing , Shi-min Dong , Zhi-xiong Tong , Ran-feng Tian , Hui-ling Chen

    An improved whole model of beam pumping system was built. In the detail, for surface transmission system (STS), a new mathematical model was established considering the influence of some factors on the STS’s torsional vibration, such as the time variation characteristic of equivalent stiffness of belt and equivalent rotational inertia of crank. For the sucker rod string (SRS), an improved mathematical model was built considering the influence of some parameters on the SRS’s longitudinal vibration, such as the nonlinear friction of plunger, hydraulic loss of pump and clearance leakage. The dynamic response and system efficiency of whole system were analyzed. The results show that there is a jumping phenomenon in the amplitude frequency curve, and the system efficiency is sensitive to motor power, pump diameter, stroke number, ratio of gas and oil, and submergence depth. The simulation results have important significance for improving the efficiency of beam pumping system.

  • Li-ping Peng , Chu-sheng Liu , Bao-cheng Song , Ji-da Wu , Shuai Wang

    Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue damage occurs frequently to affect the screening performance. This work aims to conduct a systematic mechanics analysis of the beam structures and improve the design method. Total motion of a beam structure in screening process can be decomposed into the traditional followed rigid translation (FRT), bending vibration (BV) and axial linear-distributed random rigid translation (ALRRT) excited by the side-plates. When treated as a generalized single-degree-of-freedom (SDOF) elastic system analytically, the BV can be solved by the Rayleigh’s method. Stochastic analysis for random process is conducted for the detailed ALRRT calculation. Expressions for the mechanics property, namely, the shearing force and bending-moment with respect to BV and ALRRT, are derived, respectively. Experimental and numerical investigations demonstrate that the largest BV exists at the beam center and can be nearly ignored in comparison with the FRT during a simplified engineering design. With the BV and FRT considered, the mechanics property accords well with the practical situation with the maximum error of 6.33%, which is less than that obtained by traditional method.

  • Yun Hu , Shao-jun Liu , Ji-hua Chang , Jian-ge Zhang

    To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication (EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadratic polynomial with intercrossing term and then mapped into the Hertz contact zone. Considering the randomness of the EHL, material properties and fatigue strength correction factors, the probabilistic reliability analysis model is established using artificial neural network (ANN). Genetic algorithm (GA) is employed to search the minimum reliability index and the design point by introducing an adjusting factor in penalty function. Reliability sensitivity analysis is completed based on the advanced first order second moment (AFOSM). Numerical example shows that the established probabilistic reliability analysis model could correctly reflect the effect of EHL on contact fatigue of spur gear, and the proposed intelligent method has an excellent global search capability as well as a highly efficient computing performance compared with the traditional Monte Carlo method (MCM).

  • Lei Zhang , Hai-jun Xu , Cun-yun Pan , Xiao-jun Xu

    As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD (computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 kW, which fits the power need of the portable electric generators completely.

  • Seyed Alireza Mostafavi , Sadjad Salavati , Hossein Beidaghy Dizaji , Bidabadi Mehdi

    Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion properties, of which microscopic images show that these particles have spherical shapes with identical diameters of 31 μm. The measured density of these particles is 1.0779 g/cm2. Lycopodium particles contain 64.06% carbon, 25.56% oxygen, 8.55% hydrogen and 1.83% nitrogen, and no sulfur. Thermogravimetric analysis in the nitrogen environment indicates that the maximum of particle mass reduction occurs in the temperature range of 250–550 °C where the maximum mass reduction in the DTG diagrams also occurs in. In the oxygen environment, an additional peak can also be observed in the temperature range of 500–600 °C, which points to solid phase combustion and ignition temperature of lycopodium particles. The kinetics of reactions is determined by curve fitting and minimization of error.

  • Mahdi Toupchi Khosroshahi , Farhad Mohajel Kazemi , Mohammad Reza Jannati Oskuee , Sajad Najafi-Ravadanegh

    A single machine-infinite-bus (SMIB) system including the interline power flow controllers (IPFCs) and the power system stabilizer (PSS) controller is addressed. The linearized system model is considered for investigating the interactions among IPFC and PSS controllers. To improve the stability of whole system again different disturbances, a lead-lag controller is considered to produce supplementary signal. The proposed supplementary controller is implemented to improve the damping of the power system low frequency oscillations (LFOs). Imperialist optimization algorithm (ICA) and shuffled frog leaping algorithm (SFLA) are implemented to search for optimal supplementary controllers and PSS parameters. Moreover, singular value decomposition (SVD) method is utilized to select the most effective damping control signal of IPFC lead-lag controllers. To evaluate the system performance, different operating conditions are considered. Reponses of system in five modes including uncoordinated and coordinated modes of IPFC and PSS using ICA and SFLA are studied and compared. Considering the results, response of system without controller shows the highest overshoot and the longest settling time for rotor angel at the different operating conditions. In this mode of system, rotor speed has the highest overshoot. Rotor angel in the system with only PSS includes lower overshoot and oscillation than system without controller. When PSS is only implemented, rotor speed deviation has the longest settling time. Rotor speed deviation in the uncoordinated mode of IPFC and PSS shows lower overshoot than system with only PSS and without controller. It is noticeable that in this mode, rotor angel has higher overshoot than system with only PSS. The superiority of the suggested ICA-based coordinated controllers is obvious compared with SFLA-based coordinated controllers and other system modes. Responses of coordinated PSS and IPFC SFLA-based supplementary controllers include higher peak amplitude and longer settling time compared with coordinated IPFC and PSS ICA-based controllers. This comparison shows that overshoots, undershoots and the settling times are reduced considerably in coordinated mode of IPFC based controller and PSS using ICA. Analysis of the system performance shows that the proposed method has excellent response to different faults in power system.

  • Yong Wu , Jun Wang , Yun-he Cao

    The design, analysis and parallel implementation of particle filter (PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function (IIDF) was proposed, where a new term associating with the current measurement information (CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF (IPF) can be obtained. Subsequently, a parallel resampling (PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling (SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.

  • Ye Li , Yan-qing Jiang , Lei-feng Wang , Jian Cao , Guo-cheng Zhang

    Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as planning level during the control system using transverse deviation is came up with. Continuous tracking of path expressed by a point sequence can be realized by the law. Firstly, a path tracking control system based on rational behavior model of three layers is designed, mainly satisfying the needs of underactuated AUV. Since there is no need to perform spatially coupled maneuvers, the 3D path tracking control is decoupled into planar 2D path tracking and depth or height tracking separately. Secondly, planar path tracking controller is introduced. For the reason that more attention is paid to comparing with vertical position control, transverse deviation in analytical form is derived. According to the Lyapunov direct theory, control law is designed using discrete PID algorithm whose parameters obey adaptive fuzzy adjustment. Reference heading angle is given as an output of the guidance controller conducted by lateral deviation together with its derivative. For the purpose of improving control quality and facilitating parameter modifying, data normalize modules based on Sigmoid function are applied to input-output data manipulation. Lastly, a sequence of experiments was carried out successfully, including tests in Longfeng lake and at the Yellow sea. In most challenging sea conditions, tracking errors of straight line are below 2 m in general. The results show that AUV is able to compensate the disturbance brought by sea current. The provided test results demonstrate that the designed guidance controller guarantees stably and accurately straight route tracking. Besides, the proposed control system is accessible for continuous comb-shaped path tracking in region searching.

  • Li-min Xia , Xiao-ting Shi , Hong-bin Tu

    A new method for complex activity recognition in videos by key frames was presented. The progressive bisection strategy (PBS) was employed to divide the complex activity into a series of simple activities and the key frames representing the simple activities were extracted by the self-splitting competitive learning (SSCL) algorithm. A new similarity criterion of complex activities was defined. Besides the regular visual factor, the order factor and the interference factor measuring the timing matching relationship of the simple activities and the discontinuous matching relationship of the simple activities respectively were considered. On these bases, the complex human activity recognition could be achieved by calculating their similarities. The recognition error was reduced compared with other methods when ignoring the recognition of simple activities. The proposed method was tested and evaluated on the self-built broadcast gymnastic database and the dancing database. The experimental results prove the superior efficiency.

  • Li-na Wang , L. De Lillo , C. Brunson , L. Empringham , P. Wheeler

    The behavior of matrix converter (MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses (HSFs) for MC short-circuit faults are examined and their performances are compared. The behavior of MC drive systems during the fuse action time under different operating conditions is explored. The feasibility of fault-tolerant operation during the fuse action time is also studied. The basic selection laws for the HSFs and the requirements for the passive components of the MC drive system from the point view of short-circuit faults are also discussed. Simulation results are used to demonstrate the feasibility of the proposed isolation strategies.

  • Su-jun Zhang , Xing-sheng Gu

    An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers (IBFSP) in order to minimize the maximum completion time (i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy (IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.

  • Ye-feng Li , Jia-jin Le , Mei Wang , Bin Zhang , Liang-xu Liu

    DNS (domain name system) query log analysis has been a popular research topic in recent years. CLOPE, the represented transactional clustering algorithm, could be readily used for DNS query log mining. However, the algorithm is inefficient when processing large scale data. The MR-CLOPE algorithm is proposed, which is an extension and improvement on CLOPE based on MapReduce. Different from the previous parallel clustering method, a two-stage MapReduce implementation framework is proposed. Each of the stage is implemented by one kind MapReduce task. In the first stage, the DNS query logs are divided into multiple splits and the CLOPE algorithm is executed on each split. The second stage usually tends to iterate many times to merge the small clusters into bigger satisfactory ones. In these two stages, a novel partition process is designed to randomly spread out original sub clusters, which will be moved and merged in the map phrase of the second phase according to the defined merge criteria. In such way, the advantage of the original CLOPE algorithm is kept and its disadvantages are dealt with in the proposed framework to achieve more excellent clustering performance. The experiment results show that MR-CLOPE is not only faster but also has better clustering quality on DNS query logs compared with CLOPE.

  • Hua Ma , Zhi-gang Hu

    The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario.

  • Xiang Jia , Ping Jiang , Bo Guo

    The multiply type-І censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and least-squares estimation (LSE) while it was hard to build confidence intervals (CI). The concept of generalized confidence interval (GCI) was introduced to build CIs of parameters under multiply type-I censoring. Further, GCI based on LSE and GCI based on MLE were proposed. It is mathematically proved that the former is exact and the latter is approximate. Besides, a Monte Carlo simulation study and an illustrative example also turn out that the GCI method based on LSE yields rather satisfactory results by comparison with the ones based on MLE. It should be clear that the GCI method is a sensible choice to evaluate reliability under multiply type-I censoring.

  • Yi-min Mao , Mao-sheng Zhang , Gen-long Wang , Ping-ping Sun

    Landslide hazard mapping is a fundamental tool for disaster management activities in Loess terrains. Aiming at major issues with these landslide hazard assessment methods based on Naïve Bayesian classification technique, which is difficult in quantifying those uncertain triggering factors, the main purpose of this work is to evaluate the predictive power of landslide spatial models based on uncertain Naïve Bayesian classification method in Baota district of Yan’an city in Shaanxi province, China. Firstly, thematic maps representing various factors that are related to landslide activity were generated. Secondly, by using field data and GIS techniques, a landslide hazard map was performed. To improve the accuracy of the resulting landslide hazard map, the strategies were designed, which quantified the uncertain triggering factor to design landslide spatial models based on uncertain Naïve Bayesian classification method named NBU algorithm. The accuracies of the area under relative operating characteristics curves (AUC) in NBU and Naïve Bayesian algorithm are 87.29% and 82.47% respectively. Thus, NBU algorithm can be used efficiently for landslide hazard analysis and might be widely used for the prediction of various spatial events based on uncertain classification technique.

  • Yu-xi Wang , Bo Liu , Ji-xian Gao , Xue-feng Zhang , Shun-li Li , Jian-qiang Liu , Ze-pu Tian

    Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn’t recognize reef facies and shoal facies well. To solve this problem, back propagation neural network (BP-ANN) and an improved BP-ANN with better stability and suitability, optimized by a particle swarm optimizer (PSO) algorithm (PSO-BP-ANN) were proposed to solve the microfacies’ auto discrimination of M formation from the R oil field in Iraq. Fourteen wells with complete core, borehole and log data were chosen as the standard wells and 120 microfacies samples were inferred from these 14 wells. Besides, the average value of gamma, neutron and density logs as well as the sum of squares of deviations of gamma were extracted as key parameters to build log facies (facies from log measurements)—microfacies transforming model. The total 120 log facies samples were divided into 12 kinds of log facies and 6 kinds of microfacies, e.g. lagoon bioclasts micrite limestone microfacies, shoal bioclasts grainstone microfacies, backshoal bioclasts packstone microfacies, foreshoal bioclasts micrite limestone microfacies, shallow continental micrite limestone microfacies and reef limestone microfacies. Furthermore, 68 samples of these 120 log facies samples were chosen as training samples and another 52 samples were gotten as testing samples to test the predicting ability of the discrimination template. Compared with conventional methods, like Bayes stepwise discrimination, both the BP-ANN and PSO-BP-ANN can integrate more log details with a correct rate higher than 85%. Furthermore, PSO-BP-ANN has more simple structure, smaller amount of weight and threshold and less iteration time.

  • Xiao-li Yang , Wen-tao Li , Qiu-jing Pan

    Based on the active failure mechanism generated by a spatial discretization technique, the stability of tunnel face was studied. With the help of the spatial discretization technique, not only the anisotropy and inhomogeneity of the cohesion but also the inhomogeneity of the internal friction angle was taken into account in the analysis of the supporting forces. From the perspective of upper bound theorem, the upper bound solutions of supporting pressure were derived. The influence of the anisotropy and heterogeneity on the supporting forces as well as the failure mechanisms was discussed. The results show that the spatial discretization characteristics of cohesion and internal frictional angle impose a significant effect on the supporting pressure, which indicates that above factors should be considered in the actual engineering.

  • Qiang Zhang , Ji-xiong Zhang , Yang Tai , Kun Fang , Wei Yin

    For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body’s compression ratio. Horizontal roof gap, as a key parameter of backfilling characteristics, may impact the backfilling effect from the aspects of control of roof subsidence in advance, support stress, backfilling process and the support design. Firstly, the reason why horizontal roof gap exists was analyzed and its definition, causes and connotation were introduced, then adopting the Pro/E 3D simulation software, three typical 3D entity models of backfill hydraulic supports were built, based on the influence of horizontal roof gap on backfilling effect, and influence rules of four factors, i.e. support height, suspension height, suspension angle and tamping angle, were emphatically analyzed on horizontal roof gap. The results indicate that, the four factors all have significant impacts on horizontal roof gap, but show differences in influence trend and degree, showing negative linear correlation, positive linear correlation, positive semi-parabolic correlation and negative semi-parabolic correlation, respectively. Four legs type is the most adaptive to the four factors, while six legs (II) type has the poorest adaptability, and the horizontal roof gap is small under large support height, small suspension height, small suspension angle and large tamping angle situation. By means of optimizing structure components and their positional relation and suspension height of backfill scrape conveyor in the process of support design and through controlling working face deployment, roof subsidence in advance, mining height and backfilling during engineering application, the horizontal roof gap is optimized. The research results can be served as theoretical basis for support design and guidance for backfill support to have better performance in backfilling.

  • Jun-hui Zhang , Yong-sheng Yao , Jian-long Zheng , Tao Zhang

    To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil—culvert—foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.

  • Feng-qi Guo , Xiao-tan Liu , Wu-qi Tong , Zhi Shan

    Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contraction. A prediction method of ground surface displacement was developed. The reliability of the presented method was validated through a comparison between theoretical results and results from engineering practice. Results show that the present method is effective. The effect of parameters on uplift displacement was illustrated under different grouting conditions. Through analysis, it can be known that the ground surface uplift is mainly caused by osmosis of slurry and the primary influence angle of stratum β determines the influence range of surface uplift. Besides, the results show that ground surface uplift displacement decreases notably with increasing depth of the grouting cavity but it increases with increasing diffusion radius of grout and increasing grouting pressure.

  • Xi-ling Liu , Xi-bing Li , Liang Hong , Tu-bing Yin , Meng Rao

    Acoustic emission tests were performed using a split Hopkinson pressure bar system (SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is not well centralized around 50 dB, and that some hits with large amplitudes, usually larger than 70 dB, occur in the early stages of each test, which is different from the findings from static and low-loading-rate tests. Furthermore, the dominant frequency range of the recorded acoustic emission waveforms is between 300 kHz and 500 kHz, and frequency components higher than 500 kHz are not significant. The hit with the largest values of amplitude, counts, signal strength, and absolute energy in each test, displays a waveform with similar frequency characteristics and greater correlation with the waveform obtained from the elastic input bar of the split Hopkinson pressure bar system compared with the waveforms of the other hits. This indicates that the hit with the largest values of amplitude, counts, signal strength, and absolute energy is generated by elastic wave propagation instead of fracture within the rock specimen.

  • Li Wang , Gang Zheng , Ruo-nan Ou

    Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method. Top-down excavation of the Metro Line 10 in Shanghai was modeled with finite element analysis software ABAQUS and parameters of subsoil were obtained by inverse analysis. Based on the finite element model and parameters, changes in the following factors were made to find more effective methods to restrain differential uplift and settlement: length of diaphragm wall, thickness of jet-grouting reinforcement layer, ways of subsoil reinforcement, sequence of pit excavation, connection between slabs and diaphragm wall or column and width of pit. Several significant results are acquired. The longer the diaphragm wall is, the greater the differential uplift between column and diaphragm wall is. Rigidity of roof slab is in general not strong enough to keep diaphragm wall and column undergoing the same uplift during excavation; Uplift at head of column and differential uplift between column and diaphragm wall decrease when subsoil from −16.6 to −43 m in pit is reinforced through jet-grouting. But, as excavation proceeds to a lower level, benefit from soil reinforcement diminishes. During the process applying vertical load, the larger the depth of diaphragm wall is, the smaller the settlement is at head of column and diaphragm wall, and the greater the differential settlement is between column and diaphragm wall. When friction connection is implemented between column, diaphragm wall and floor slabs, uplifts at head of column and diaphragm wall are larger than those of the case when tie connection is implemented, and so does differential uplift between column and diaphragm wall. The maximum deflection of diaphragm wall decreases by 58% on account of soil reinforcement in pit. The maximum deflection of diaphragm wall decreases by 61.2% when friction connection is implemented instead of tie connection.

  • Lang Liu , Zhong-qiang Chen , Li-guan Wang

    Rock bursts are spontaneous, violent fracture of rock that can occur in deep mines, and the likelihood of rock bursts occurring increases as depth of the mine increases. Rock bursts are also affected by the compressive strength, tensile strength, tangential strength, elastic energy index, etc. of rock, and the relationship between these factors and rock bursts in deep mines is difficult to analyze from quantitative point. Typical rock burst instances as a sample set were collected, and membership function was introduced to process the discrete values of these factors with the discrete factors as condition attributes and rock burst situations as decision attributes. Dominance-based rough set theory was used to generate preference rules of rock burst, and eventually rock burst laws analysis in deep mines with preference relation was taken. The results show that this model for rock burst laws analysis in deep mines is more reasonable and feasible, and the prediction results are more scientific.

  • Hong Yan , Ji-xiong Zhang , Lin-yue Li , Rui-min Feng

    The installation of a back-wall guard-board is the key to successfully supporting underground retreating roadways in coal mines. Based on the coordinate support principle, and using an I-shaped steel support for the surrounding rock, a mechanical model was developed for the stability of the roadway support and surrounding rock. Analysis of the bearing capacity of the roof back-wall guard-board and modelling of the equations for the maximum deflection and the maximum compressive stress of the top and side beams of the I-shaped steel support were undertaken. Simultaneously, the model was used to calculate and analyse the stability of the top and side beams of the I-shaped steel support structure and analyse the criteria for their stability. The results provide a reliable theoretical basis for the judgment of the stability of the surrounding rock and support structure. The theoretical evaluation results are consistent with field data. Finally, the key support parameters of the top and side beams of the I-shaped steel support structure and the variation of the maximum deflection and the maximum compressive stress as affected by the influence of the guard-board length were investigated. It is concluded that, as the back-board length increases, the maximum compressive stress in the top beam of the I-shaped steel support increases while the compressive stress in the side beam decreases. The results show that the accuracy of judgment of the stability of a supported retreating roadway is improved, providing guidance for the design of such typical I-shaped steel support and back-board structures.

  • Ling-jie Wu , Yong-jun Zhou , Xin-jian Kou , Meng Jiang

    Chloride-induced corrosion of the reinforcement is considered as one of the major mechanisms resulting in the reduction of structural resistance of reinforced concrete structural elements located in marine and other aggressive environments. A study of reinforced concrete structures located at the Fangcheng dock in the Beibu Gulf port, China, was present. The result from field survey indicates that the concrete cover depth and chloride diffusion coefficient fit best normal distribution and lognormal distribution, respectively. The service life of structure is about 55 a, while initiation time is 45 a. Sensitivity analysis indicates that the most influential factor of the structure service life prediction is concrete cover, followed by diffusion coefficient, diffusion decay index, critical chloride concentration, surface chloride concentration, current density and localized pitting corrosion. Finally, the effects of diffusion decay index and critical chloride concentration on structure service life prediction are discussed.

  • Shu-hui Lü , Kui-Hua Wang , Peng Zhang , C. J. Leo

    A simplified approach is presented to analyze the single pile settlement in multilayered soil. First, a fictitious soil—pile model is employed to consider the effect of layered soil beneath pile toe on pile settlement behavior. Two approximation methods are proposed to simplify the nonlinear load transfer function and simulate the nonlinear compression of fictitious soil—pile, respectively. On this basis, an efficient program is developed. The procedures for determining the main parameters of mathematical model are discussed. Comparisons with two well-documented field experimental pile loading tests are conducted to verify the rationality of the present method. Further studies are also made to evaluate the practicability of the proposed approach when a soft substratum exists, and the results suggest that the proposed method can provide a constructive means for assessing the settlement of a single pile for use in engineering design.

  • Jie Liu , Ping Cao , Chun-huang Du , Zhe Jiang , Jing-shuo Liu

    Based on the triaxial testing machine and discrete element method, the effects of embedded crack on rock fragmentation are investigated in laboratory tests and a series of numerical investigations are conducted on the effects of discontinuities on cutting characteristics and cutting efficiency. In laboratory tests, five propagation patterns of radial cracks are observed. And in the numerical tests, firstly, it is similar to laboratory tests that cracks ahead of cutters mainly initiate from the crushed zone, and some minor cracks will initiate from joints. The cracks initiating from crushed zones will run through the thinner joints while they will be held back by thick joints. Cracks tend to propagate towards the tips of embedded cracks, and minor cracks will initiate from the tips of embedded cracks, which may result in the decrease of specific area, and disturbing layers play as ‘screens’, which will prevent cracks from developing greatly. The peak penetration forces, the consumed energy in the penetration process and the uniaxial compression strength will decrease with the increase of discontinuities. The existence of discontinuities will result in the decrease of the cutting efficiency when the spacing between cutters is 70 mm. Some modifications should be made to improve the efficiency when the rocks containing groups of discontinuities are encountered.

  • Ze Liu , Ning-ning Shao , Jun-feng Qin , Fan-long Kong , Chun-xue Wang , Dong-min Wang

    A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash (CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different SiO2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 °C were investigated. The specimen with SiO2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 °C.

  • Jia-ling Zhu , Hua-yu Bo , Tai-lu Li , Kai-yong Hu , Ke-tao Liu

    A comparison on subcritical and transcritical organic Rankine cycle (ORC) system with a heat source of 110 °C geothermal water was presented. The net power output, thermal and exergy efficiencies and the products of the heat transfer coefficient (U) and the total heat exchange area (A) (UA values) were calculated for parametric optimization. Nine candidate working fluids were investigated and compared. Under the given conditions, transcritical systems have higher net power outputs than subcritical ones. The highest net power output of transcritical systems is 18.63 kW obtained by R218, and that of subcritical systems is 13.57 kW obtained by R600a. Moreover, with the increase of evaporating pressure, the thermal and exergy efficiencies of transcritical systems increase at first and then decrease, but the efficiencies of subcritical ones increase. As a result, the efficiencies of transcritical systems cannot always outperform those of the subcritical ones. However, the subcritical systems have lower minimum UA values and lower expansion ratios than the transcritical ones at the maximum net power output. In addition, the transcritical cycles have higher expansion ratios than the subcritical ones at their maximum net power output.

  • Li Li , Hai-liang Xu , Fang-qiong Yang

    In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature—pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid—liquid two-phase flow (hydrate and water) transforms into gas—solid—liquid three-phase flow (methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas—solid—liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.

  • Hai-peng Dong , Guang-jun Gao , Su-chao Xie , Jian Li

    A numerical study of bitubular tubes with diaphragms compared with single and bitubular tubes subjected to dynamic axial impact force was presented. At first, the energy absorption response of the composite structure under axial loading was analyzed by finite element simulation. The results show that the efficiency of energy absorption can be improved by introducing diaphragms to the double-walled columns. Then, the effect of the amount and location of diaphragms, the shape and the size of the inner tubes, and the thickness of the composite structures were also studied numerically. The collision performance of the composite structure is affected by the deformation of diaphragms, as well as the interaction of outer and inner tube. The non-uniform distribution of diaphragms can improve the energy absorption efficiency of structures for a constant number of diaphragms. The specific energy absorption of the hexagonal inner tube is the highest, followed by the circular, octagonal and square ones.

  • Yong-ji Luo , Jun Liu , Xun Sun , Qing-ying Lai

    A non-linear regression model is proposed to forecast the aggregated passenger volume of Beijing–Shanghai high-speed railway (HSR) line in China. Train services and temporal features of passenger volume are studied to have a prior knowledge about this high-speed railway line. Then, based on a theoretical curve that depicts the relationship among passenger demand, transportation capacity and passenger volume, a non-linear regression model is established with consideration of the effect of capacity constraint. Through experiments, it is found that the proposed model can perform better in both forecasting accuracy and stability compared with linear regression models and back-propagation neural networks. In addition to the forecasting ability, with a definite formation, the proposed model can be further used to forecast the effects of train planning policies.

  • Fang Zong , Hui-yong Zhang , Hai-fan Li

    Taxi drivers’ cruising patterns are learnt with GPS trajectory data collected in Shenzhen, China. By employing Ripley’s K function, the impacts of land use and pick-up experience on taxis’ cruising behavior are investigated concerning about both intensity of influence and radius of influence. The results indicate that, in general, taxi drivers tend to learn more from land use characteristics than from pick-up experience. The optimal radius of influence of land use points and previous pick-up points is 14.18 km and 9.93 km, respectively. The findings also show that the high-earning drivers or thorough drivers pay more attention to land use characteristics and tend to cruise in high-density area, while the low-earning drivers or focus drivers prefer to learn more from previous pick-up experience and select the area which is far away from the high-density area. These findings facilitate the development of measures of managing taxi’s travel behavior by providing useful insights into taxis’ cruising patterns. The results also provide useful advice for taxi drivers to make efficient cruising decision, which will contribute to the improvement of cruising efficiency and the reduction of negative effects.