Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash

Ze Liu , Ning-ning Shao , Jun-feng Qin , Fan-long Kong , Chun-xue Wang , Dong-min Wang

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (9) : 3633 -3640.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (9) : 3633 -3640. DOI: 10.1007/s11771-015-2904-0
Article

Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash

Author information +
History +
PDF

Abstract

A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash (CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different SiO2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 °C were investigated. The specimen with SiO2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 °C.

Keywords

foam geopolymer / circulating fluidized bed combustion fly ash / thermal analysis / microstructure / strength

Cite this article

Download citation ▾
Ze Liu, Ning-ning Shao, Jun-feng Qin, Fan-long Kong, Chun-xue Wang, Dong-min Wang. Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash. Journal of Central South University, 2015, 22(9): 3633-3640 DOI:10.1007/s11771-015-2904-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DavidovitsJGeopolymer chemistry and applications [M], 2008Saint-Quentin (France)Institute Geopolymer2-20

[2]

KomnitsasK, ZaharakiD. Geopolymerisation: A review and prospects for the minerals industry [J]. Minerals Engineering, 2007, 20: 1261-1277

[3]

DuxsonP, ProvisJ L, LukeyG C, van DeventerJ S J. The role of inorganic polymer technology in the development of ‘green concrete’ [J]. Cement and Concrete Research, 2007, 37(12): 1590-1597

[4]

LeeB KSolid-gel interactions in geopolymers [D], 2002MelbourneUniversity of Melbourne

[5]

SiddiqueR, KhanM ISupplementary cementing materials [M], 2011New YorkSpringer1-66

[6]

ShiX S, CollinsF G, ZhaoX L, WangQ Y. Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete [J]. Journal of Hazardous Materials, 2012, 237–238: 20-29

[7]

Haji-EsmaeiliHAdmixtures for use in geopolymers [D], 2012Thunder BayLakehead University

[8]

NataliA, ManziS, BignozziM C. Novel fiber-reinforced composite materials based on sustainable geopolymer matrix [J]. Procedia Engineering, 2011, 21: 1124-1131

[9]

LiuZ, ShaoN-n, WangD-m, QinJ-f, HuangT-y, SongW, LinM-x, YuanJ-s, WangZ. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash [J]. International Journal of Minerals: Metallurgy and Materials, 2014, 21(1): 89-93

[10]

AbdullahM M A B, HussinK, BnhussainM, IsmailK N, YahyaZ, RazakR A. Fly ash-based geopolymer lightweight concrete using foaming agent [J]. International Journal of Molecular Sciences, 2012, 13: 7186-7198

[11]

Tho-InT, SataV, ChindaprasirtP, JaturapitakkulC. Pervious high-calcium fly ash geopolymer concrete [J]. Construction and Building Materials, 2012, 30: 366-371

[12]

RiahiS, NazariA. The effects of nanoparticles on early age compressive strength of ash-based geopolymers [J]. Ceramics International, 2012, 38(6): 4467-4476

[13]

DuxsonP, LukeyG C, van DeventerJ S J. Thermal evolution of metakaolin geopolymers: Part 1-Physical evolution [J]. Journal of Non-Crystalline Solids, 2006, 352: 5541-5555

[14]

DuxsonP, LukeyG C, VanD J S J. Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity [J]. Industrial & Engineering Chemistry Research, 2006, 45: 7781-7788

[15]

ProvisJ L v, DeventerJ S J. Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry [J]. Journal of Materials Science, 2007, 42: 2974-2981

[16]

NathS K, KumarS. Influence of iron making slags on strength and microstructure of fly ash geopolymer [J]. Construction and Building Materials, 2013, 38: 924-930

[17]

ZhangY-j, WangY-c, XuD-l, LiS. Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin [J]. Materials Science and Engineering A, 2010, 527: 6574-6580

[18]

BarbosaV F F, MackenzieK J D. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate [J]. Materials Research Bulletin, 2003, 38(2): 319-331

[19]

HeP-g, JiaD-c, LinT-s, WangM-r, ZhouYu. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites [J]. Ceramics International, 2010, 36: 1447-1453

[20]

KongD L Y, SanjayanJ G S-C K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures [J]. Cement and Concrete Research, 2007, 37: 1583-1589

[21]

BakharevT. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing [J]. Cement and Concrete Research, 2006, 36: 1134-1147

[22]

RickardW D A, TemuujinJ v, RiessenA. Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition [J]. Journal of Non-Crystalline Solids, 2012, 358: 1830-1839

[23]

DombrowskiK, BuchwaldA, WeilM. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers [J]. Journal of Materials Science, 2007, 42(9): 3033-3043

[24]

RickardW D A, VickersL v, RiessenA. Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions [J]. Applied Clay Science, 2012, 73: 71-77

[25]

ZhaoY-l, YeJ-w, LuX-b, LiuM-g, LinY, GongW-t, NingG-l. Preparation of sintered foam materials by alkali-activated coal fly ash [J]. Journal of Hazardous Materials, 2010, 174: 108-112

[26]

PrudhommeE, MichaudP, JousseinE, ClacensJ M A-C S, SobradosI, PeyratoutC, SmithA, SanzJ, RossignolS. Structural characterization of geomaterial foams-Thermal behavior [J]. Journal of Non-Crystalline Solids, 2011, 357: 3637-3647

[27]

MasiG, RickardW D A, VickersL, BignozziM C v, RiessenA. A comparison between different foaming methods for the synthesis of light weight geopolymers [J]. Ceramics International, 2014, 40(9): 13891-13902

[28]

LiefkeEIndustrial applications of foamed inorganic polymers[C], 1999189-195

[29]

KhaleD, ChaudharyR. Mechanism of geopolymerization and factors influencing its development: A review [J]. Journal of Materials Science, 2007, 42: 729-746

[30]

SilvaP D S-C K. Medium-term phase stability of Na2O-Al2O3-SiO2-H2O geopolymer systems [J]. Cement and Concrete Research, 2008, 38: 870-876

[31]

LiuZ, ShaoN-n, HuangT-y, QinJ-f, WangD-m, YangYu. Effect of SiO2/Na2O ratio on the properties of the foam geopolymer using circulating fluidized bed fly ash [J]. International Journal of Minerals: Metallurgy and Materials, 2014, 21(6): 620-626

[32]

ZhangZ-h, ProvisJ L, ReidA, WangH. Geopolymer foam concrete: An emerging material for sustainable construction [J]. Construction and Building Materials, 2014, 56: 113-127

[33]

KongD L Y, SanjayanJ G S-C K. Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures [J]. Journal of Materials Science, 2008, 43(3): 824-831

[34]

RickardW D A, WilliamsR, TemuujinJ v, RiessenA. Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications [J]. Materials Science and Engineering A, 2011, 528: 3390-3397

[35]

Fernandez-JimenezA, PalomoA, PastorJ Y, MartinA. New cementitious materials based on alkali-activated fly ash: Performance at high temperatures [J]. Journal of the American Ceramic Society, 2008, 91(10): 3308-3314

[36]

WangH-l, LiH-h, YanF-y. Synthesis and mechanical properties of metakaolinite-based geopolymer [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 268: 1-6

[37]

DuxsonP, LukeyG C, van DeventerJ S J. Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C [J]. Journal of Materials Science, 2007, 42(9): 3044-3054

[38]

DuxsonP, LukeyG C, VAN DeventerJ S J. The thermal evolution of metakaolin geopolymers: Part 2-Phase stability and structural development [J]. Journal of Non-Crystalline Solids, 2007, 353: 2186-2200

[39]

RickardW D A, van RiessenA, WallsP. Thermal character of geopolymers synthesized from class F fly ash containing high concentrations of iron and a-quartz [J]. International Journal of Applied Ceramic Technology, 2010, 7(1): 81-88

[40]

ProvisJ L, HarrexR M, BernalS A, DuxsonP v, DeventerJ S J. Dilatometry of geopolymers as a means of selecting desirable fly ash sources [J]. Journal of Non-Crystalline Solids, 2012, 358: 1930-1937

[41]

RahierH, WastielsJ, BiesemansM, WillemR v, AsscheG v, MeleB. Reaction mechanism, kinetics and high temperature transformations of geopolymers [J]. Journal of Materials Science, 2007, 42: 2982-2996

[42]

BarbosaV F F, MackenzieK J D, ThaumaturgoC. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers [J]. International Journal of Inorganic Materials, 2000, 2(4): 309-317

[43]

GunzlerH, GremlichHIR spectroscopy: An introduction [M], 2002GermanyWiley-VCH Verlag GmbH203-214

[44]

ChindaprasirtP, JaturapitakkulC, ChaleeW, RattanasakU. Comparative study on the characteristics of fly ash and bottom ash geopolymers [J]. Waste Management, 2009, 29: 539-543

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/