Micro arc oxidation (MAO) and electrophoretic deposition (EPD) process are employed to fabricate a dense coating on magnesium alloy to protect it from corrosion in engineering application. The EPD film changes the damping characteristic of magnesium alloy, and both the MAO and EPD process change the bending stiffness of samples being treated. Damping loss factor (DLF) test and sound transmission experiments were carried out for AZ31B magnesium alloy with coating fabricated by MAO and EPD processes. The results indicate that DLF is improved in frequency range from 0–850 Hz. Bending stiffness of the samples is improved with MAO and EPD treatment. As a result, the sound transmission loss (LST) is improved in the stiffness control stage of the sound transmission verse frequency curve. To the samples by electrophoresis process, the LST is improved in frequency range from 2500–3200 Hz, because the damping loss factor is improved with EPD process. The results are useful for the surface treatment to enhance the damping loss factor, LST and widespread application of magnesium alloy while improving the corrosion resistance.
Mg-8Sn-1Al-1Zn-xNi (x=0.5%, 1.0%, 1.5%, 2.0%, mass fraction) alloys were designed and prepared. The microstructures and the mechanical properties were studied by using optical microscope, scanning electronic microscope, energy dispersive X-ray spectroscope, X-ray diffraction and a standard universal testing machine. The results show that the microstructure of Ni-containing alloys consist of α-Mg, Mg2Sn, β-Mg-Ni-Al and γ-AlNi phases. No β-Mg-Ni-Al phase was observed in TAZ811-2.0Ni alloy due to its 1:1 atomic ratio of Ni/Al. The addition of Ni refines the α-Mg dendrites and suppresses the formation of coarse Mg2Sn phase. The tensile properties results show that the TAZ811-0.5Ni alloy presented the best mechanical properties, which is due to the rod-like β-Mg-Ni-Al phase, refined α-Mg dendrites and Mg2Sn phase, as well as γ-AlNi phase. The tensile fracture mechanism transits from cleavage to quasi-cleavage fracture with the increasing Ni addition.
The elevated-temperature mechanical properties and thermal stability of Al-Cu-Mg-Ag heat-resistant alloy were studied by tensile test, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. The results show that with the increase of Ag content, the tensile strength and yield strength increase, which is attributed to the increase of the precipitations number and the decrease of the size. The same conclusions are drawn in the study of increasing Mg content. The alloy possesses excellent thermal stability. At 100–150 °C, the strength of the under-aged alloy increases at the initial stage, and after reaching the peak strength, it remains the same. The secondary precipitation of the under-aged alloy occurs in the process of exposure at 150°C, and it distributes diffusely after thermal exposed for 20 h. Then, the tensile strength decreases gradually with increasing the thermal exposure time at 200–250 °C. The strength of the peak-aged alloy decreases gradually, and the precipitation grows up, but the number decreases gradually with prolonging the exposure time at 100–250 °C. The strength of two kinds of alloys decreases with elevating of exposure temperature.
In this work, the damage and penetration behavior of aluminum foam at various types of impact were examined through experiments. The impact energy of a striker was applied on the fixed aluminum foam having a thickness of 25 mm while increasing its impact by 2 J at each strike from 6 J to 16 J. The results show that the impact energies from 6 J to 12 J could not penetrate aluminum foam. However, the aluminum foam applied with the impact energy of 12 J incurred severe damages on its lower part. Finally, the aluminum foam applied with the impact energy of 14 J was penetrated. The striker having the impact energy of 6 J could penetrate aluminum foam around 10 mm. At this moment, aluminum foam could absorb the impact energy of around 9 J. When the impact energy of 14 J was applied on the aluminum foam, the aluminum foam was penetrated and it absorbed the impact energy of around 17.2 J. It is possible to create the safer structure against impact using the results of this work. The simulation results for the verification of the experimental results imply that the results for all the experiments in this work are reliable. It is possible to predict the structural safety of the aluminum foam for an impact if the impact behavior of aluminum foam performed in this work is utilized.
Alkali metal (Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were investigated. The structure and surface morphologies of samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The UV-Vis absorption and infrared emissivities were investigated by a UV-Vis spectrophotometer and an infrared emissometer, respectively. XRD patterns confirm the wurtzite structure of the as prepared samples with single phase. Smooth grain surfaces are detected in all doped ZnO samples, while ZnO:Li and ZnO:Na present the aggregation of grains. The redshifts in the optical band-gap are observed in K-, Na-, and Li-doped ZnO with the values 3.150, 3.144, and 3.142 eV. Due to better crystalline quality, ZnO:K shows a lower emissivity than others. The emissivity of K-doped ZnO decreases to the minimum value (0.804), at 1200 °C and holding 2 h. Compared with KNO3 as K source, K2CO3 doped ZnO has lower emissivities.
In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 °C, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.
Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results reveal that the precusor was monoclinic Mg5(CO3)4(OH)2·4H2O and composed of nanosheets with the thickness of about 250 nm. By calcining the precusor at 500 °C for 5 min, cubic MgO with similar morphology was obtained. According to the SEM images, it is found that the volume ratio of PEG-400 to deionized water is considered as a crucial factor in the evolution of the morphology. Based on the SEM images obtained under different experimental conditions, a possible growth mechanism which involves self-assembly process was proposed. The thermal decomposition process of MgO precusor was studied by thermogravimetry-differential thermogravimetry (TG-DTG) at different heating rates in air. Thermal analysis kinetics results show that the most probale mechanism models of MgO precusor are An and D3, respectively. In addition, isothermal prediction was studied to quantitatively characterize the thermal decomposition process.
Failure data from oilfield showed that casings which were designed according to API standards were deformed and collapsed in salt formations. The main reason for decrease in strength may be caused by non-uniform loading (NUL) that was not considered in traditional casing collapsing strength design or that the designing method should be improved and developed. Obviously, the calculation of casing collapse strength is one of the key factors in casing design. However, the effect of NUL on casing collapse strength was generally neglected in the present computational methods. Therefore, a mechanical model which can calculate casing collapse strength under NUL was established based on the curved beam theory of the elasticity and was solved using displacement method. Simultaneously, three anti-collapse experiments were performed on C110 casing under NUL, and the strain and deformation laws of three casings in the process of collapse were obtained by the electrical method. Yield limit of every casing was obtained by analyzing those data. Experimental results are consistent with the results of calculation of new model. It indicates that the model can be used to calculate yield limit loading of casings under NUL.
PS-PAMAM-IDA chelating resins were prepared by low-generations of polyamidoamine (PAMAM) and then chloroacetic acid functionalizing commercially available ammoniated polystyrene matrix, to preconcentrate Ni2+ from synthetic aqueous samples. Different generations of PAMAM were used to obtain different chelating resins, PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA. The synthesized resins were characterized by FTIR and elemental analysis. The effect of solution pH, kinetic studies, resin loading capacity, matrix effects etc., on metal ion adsorption to adsorbent phase, were studied by batch method. The PS-1.0G PAMAM-IDA resin was the most excellent adsorbents, with a maximum adsorption capacity of (24.09±1.79) mg/g for Ni2+ ion at pH=7. The interpretation of the equilibrium data was given by Langmuir isotherms model, and the correlation coefficient values for PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA resins were 0.992, 0.994 and 0.987, respectively.
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding (HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
The performance of Smith prediction monitoring automatic gauge control (AGC) system is influenced by model mismatching greatly in strip rolling process. Aiming at this problem, a feedback-assisted iterative learning control strategy, which learned unknown modeling error by using previous control information repeatedly, was introduced into Smith prediction monitoring AGC system. Firstly, conventional Smith predictor and improved Smith predictor with PI-P controller were analyzed. Secondly, on the basis of establishing of feedback-assisted iterative learning control strategy for improved Smith predictor, process control signal update law and control error were deduced, then convergence condition of this strategy was put forward and proved. Finally, after modeling the automatic position control system, the PI-P Smith prediction monitoring AGC system with feedback-assisted iterative learning control was researched through simulation. Simulation results indicate that this system remains stable during model mismatching. The robustness and response of monitoring AGC is improved by development of feedback-assisted iterative learning control strategy for PI-P Smith predictor.
Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.
An integrated optimization design was described using multilevel decomposition technique on the base of the parametric distribution and independent axiom at the stages of lower level. Based on Pareto optimum solution, the detailed parameters at lower level can be defined into the independent axiom. The suspension design was used as the simulation example. In an axiomatic design for the optimization design, the uncoupled and decoupled designs between functional requirements and design parameters are generally needed. But using the design sensitivity (or screening) of design parameters, the approximate uncoupled design is developed on behalf of the decoupled and coupled designs. Successive design parameters were applied to the suspension of torsion beam axle. The structural performance increases by 18%. The kinematic and compliance performance increases by 6% within the feasible ranges.
The effect of channel-width chirping on near- and far-field intensity patterns of the six supermodes was investigated. The supermode discrimination was evaluated in various channel-chirped index guided laser arrays. The results show that the linearly channel-chirped laser array has very good supermode discrimination which is better than that of a uniform laser array, the V channel-chirped laser array has the smallest radiation angle of the fundamental supermode among the calculated arrays, and the asymmetrically V channel-chirped array has a very small radiation angle of the fundamental supermode, which is smaller than that of the uniform array and also allows for very good fundamental supermode discrimination against the higher-order supermodes, which is better than that of the V channel-chirped laser array.
Metal organic chemical vapor deposition (MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heating device and thermal control technology are needed for each new reactor design. By using resistance-wire heating MOCVD reaction chamber model, thermal analysis and structure optimization of the reactor were developed from the vertical position and the distance between coils of the resistance-wire heater. It is indicated that, within a certain range, the average temperature of the graphite susceptor varies linearly with the vertical distance of heater to susceptor, and with the changed distances between the coils; furthermore, single resistance-wire heater should be placed loosely in the internal and tightly in the external. The modulate accuracy of the temperature field approximately equals the change of the average temperature corresponding to the change of the coil position.
An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping (SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases.
Information analysis of high dimensional data was carried out through similarity measure application. High dimensional data were considered as the a typical structure. Additionally, overlapped and non-overlapped data were introduced, and similarity measure analysis was also illustrated and compared with conventional similarity measure. As a result, overlapped data comparison was possible to present similarity with conventional similarity measure. Non-overlapped data similarity analysis provided the clue to solve the similarity of high dimensional data. Considering high dimensional data analysis was designed with consideration of neighborhoods information. Conservative and strict solutions were proposed. Proposed similarity measure was applied to express financial fraud among multi dimensional datasets. In illustrative example, financial fraud similarity with respect to age, gender, qualification and job was presented. And with the proposed similarity measure, high dimensional personal data were calculated to evaluate how similar to the financial fraud. Calculation results show that the actual fraud has rather high similarity measure compared to the average, from minimal 0.0609 to maximal 0.1667.
A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared with that of the frequency-based, user-based, item-based, k-means clustering-based, and genetic algorithm-based methods in terms of precision, recall, and F1 score. The results show that the proposed method yields better performance under the new user cold-start problem when each of new active users selects only one or two items into the basket. The average F1 scores on all four datasets are improved by 225.0%, 61.6%, 54.6%, 49.3%, 28.8%, and 6.3% over the frequency-based, user-based, item-based, k-means clustering-based, and two genetic algorithm-based methods, respectively.
A smartphone-based context-aware augmentative and alternative communication (AAC) was applied was in order to enhance the user’s experience by providing simple, adaptive, and intuitive interfaces. Various potential context-aware technologies and AAC usage scenarios were studied, and an efficient communication system was developed by combining smartphone’s multimedia functions and its optimized sensor technologies. The experimental results show that context-awareness accuracy is achieved up to 97%.
In order to achieve higher efficient cohesion match of procedure and equipment between ironmaking and steelmaking interface, the theory of multi-dimensional material flow control was applied to analyze torpedo ladle-iron ladle transportation process between blast furnace and basic oxygen furnace. Moreover, basic parameters of material flow were analyzed and optimized, such as time, temperature and material quantity. Based on operating principles of material flow, control methods were optimized, such as product organization mode, scheduling discipline and scheduling plan of hot metal ladle. Finally, the material flow control technology of ironmaking and steelmaking interface was integrated. Satisfactory effects are obtained after applying the technology in practice. The total turnover number of torpedo ladle decreases from 20 to 18, the hot metal temperature of 1# BF torpedo ladle decreases from 36 °C to 19.5 °C, the hot metal temperature of 2# BF torpedo ladle decreases from 36.6 °C to 19.8 °C, the temperature drop of desulfurization hot metal decreases by 4 °C, and the temperature drop of non-desulfurization hot metal decreases by 2.8 °C. Furthermore, the ironmaking and steelmaking interface system will realize high-efficiency control by using this control technology.
Activated carbon (AC) was prepared from surplus sludge using chemical activation method with the assistance of ZnCl2. The influences of process parameters on the AC’s specific surface area and adsorption capacity for Pb2+ were examined to optimize these parameters. The optimal conditions for the preparation of AC were determined to be activation temperature of 500 °C, activation time of 1 h, impregnation ratio of 1:1 (solid-to-liquid volume) with the 30% ZnCl2 solution (mass fraction), giving the BET surface area of 393.85 m2/g and yield of 30.14% with 33.45% ash. Also, the pyrolysis temperature was found to be the most important parameter in chemical activation. FTIR spectra provided the evidence of some surface structures such as C=C and C-O-C. In the adsorption studies, a rise in solution pH led to a significant increase in adsorption capacity when the pH value varied from 3.0 to 7.0, and the optimal pH for removal of Pb2+ was 7.0. It was observed that the pseudo-second-order equation provided better correlation for the adsorption rate than the pseudo-first-order and the Langmuir model fitted better than the Freundlich model for adsorption isotherm. The adsorption capacity of AC to Pb2+ was 11.75 mg/L at solution pH 7.0, the equilibrium time 480 min and 25 °C. Moreover, the adsorption process is endothermic according to the value of enthalpy change.
The industrial silica fume pretreated by nitric acid at 80 °C was re-used in this work. Then, the obtained silica nanoparticles were surface functionalized by silane coupling agents, such as (3-Mercaptopropyl) triethoxysilane (MPTES) and (3-Amincpropyl) trithoxysilane (APTES). Some further modifications were studied by chloroaceetyl choride and 1,8-Diaminoaphalene for amino modified silica. The surface functionalized silica nanoparticles were characterized by Fourier transform infrared (FI-IR) and X-ray photoelectron spectroscopy (XPS). The prepared adsorbent of surface functionalized silica nanoparticles with differential function groups were investigated in the selective adsorption about Pb2+, Cu2+, Hg2+, Cd2+ and Zn2+ ions in aqueous solutions. The results show that the (3-Mercaptopropyl) triethoxysilane functionalized silica nanoparticles (SiO2-MPTES) play an important role in the selective adsorption of Cu2+ and Hg2+, the (3-Amincpropyl) trithoxysilane (APTES) functionalized silica nanoparticles (SiO2-APTES) exhibited maximum removal efficiency towards Pb2+ and Hg2+, the 1,8-Diaminoaphalene functionalized silica nanoparticles was excellent for removal of Hg2+ at room temperature, respectively.
A laboratory scale up-flow biological activated carbon (BAC) reactor was constructed for the advanced treatment of synthetic flotation wastewater. Biodegradation of a common collector (i.e., ethyl xanthate) for non-ferrous metallic ore flotation was evaluated. The results show that the two stages of domestication can improve microbial degradation ability. The BAC reactor obtains a chemical oxygen demand (COD) reduction rate of 82.5% for ethyl xanthate and its effluent COD concentration lowers to below 20 mg/L. The kinetics equation of the BAC reactor proves that the activated carbon layers at the height of 0 mm to 70 mm play a key role in the removal of flotation reagents. Ultraviolet spectral analysis indicates that most of the ethyl xanthate are degraded by microorganisms after advanced treatment by the BAC reactor.
The properties and thickness of the bubbles in the froth control the flotation process. There is no work showing how to measure bubble film composition and thickness by a straightforward manner. In this work, a novel approach, a custom-designed bubble cell associated with layer interferometry (in the UV-vis region) and FT-IR spectroscopy was used to investigate the effect of solid particle type (hydrophilic vs hydrophobic), concentration and bubble diameter on stability of a bubble blown in air. Stability was quantified by measuring bubble lifetime and hydrated film thickness. Kerosene with silicone oil as a foaming agent was used to evaluate the impact of bubble diameter (test series I). Frother solutions (MIBC, Dowfroth 250, Hexanol and F-150) were used for the solid type concentration experiments (test series II). In the first series of experiments, it was determined that as the diameter of a bubble increased from 10 to 25 mm, so did the hydrated film thickness from 350 to 1000 nm. In the second series, as the silica concentration increased (0 to 10%), an increase in bubble lifetime and hydrated film thickness was resulted (130%–250%). An impact of solid hydrophobicity was found but to a lesser degree than expected. It is possible that the small particle size (<0.1 m) of silica was responsible for this behavior. The findings are used to interpret the effect of solids in flotation froth.
Flotation experiments were performed to investigate the separation of muscovite and quartz in the presence of dodecylamine (DDA), tallow amine (TTA) and dodecyltrimethylammonium bromide (DTAC). The adsorption mechanisms of these three kinds of amines on muscovite and quartz were studied by FT-IR spectrum analysis, contact angle measurement and molecular dynamics (MD) simulation. The results reveal that the separation of muscovite from quartz is feasible at strong acid pulp condition using amine collectors. TTA and DTAC show poorer collecting ability for flotation of the two minerals compared with DDA. Physical adsorption is found to be the main adsorption module of amine collectors on muscovite and quartz by FT-IR analysis. MD simulation results show a strong physical adsorption ability of DDA+ cation on muscovite and quartz (muscovite (001): −117.31 kJ/mol, quartz (100): −89.43 kJ/mol), while neutral DDA molecular can hardly absorb onto the surface of these two minerals. These findings provide a novel explanation for the flotation mechanism from the perspective of MD simulation.
Quartz is, in most cases, the major gangue mineral found in the manganese ore. Mn iron, dissolved from the surface of ore, will determine the interfacial properties of the particles and, thus, their flotation behavior. In this work, the effect of Mn2+ on quartz flotation was investigated through flotation tests. It was found that quartz can be depressed with Mn2+ and floated with dodecylamine in the pH region 7–8. In order to prove the validity of the findings, UV spectrophotometry, FTIR and SEM-EDS were carried out. UV spectrophotometry tests results show that Mn2+ can competitive adsorb with RNH3+ in the surface of quartz at acidic and neutral pH values. The FTIR measurements and SEM-EDS analysis indicate that Mn2+ forms precipitation and adsorbs on the negatively charged quartz surface, it induces quartz recovery dropping in alkaline pH. Furthermore, in the case of sodium hexametaphosphate (SH), sodium silicate or citric acid, the effects of Mn2+ were also studied. This depression in the given Mn2+ did not disappear. Citric acid is an appropriate modifier to separate quartz depressed by Mn2+ from other ores at pH 7.
Markov random fields (MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass relationships. While, many relative studies were based on Markov chain, not MRF, and using Markov chain model for 3D reservoir stochastic simulation has always been the difficulty in reservoir stochastic simulation. MRF was proposed to simulate type variables (for example lithofacies) in this work. Firstly, a Gibbs distribution was proposed to characterize reservoir heterogeneity for building 3-D (three-dimensional) MRF. Secondly, maximum likelihood approaches of model parameters on well data and training image were considered. Compared with the simulation results of MC (Markov chain), the MRF can better reflect the spatial distribution characteristics of sand body.
The first generation coherence algorithm (namely C1 algorithm) is based on the statistical cross-correlation theory, which calculates the coherency of seismic data along both in-line and cross-line. The work, based on texture technique, makes full use of seismic information in different directions and the difference of multi-traces, and proposes a novel methodology named the texture coherence algorithm for seismic reservoir characterization, for short TEC algorithm. Besides, in-line and cross-line directions, it also calculates seismic coherency in 45° and 135° directions deviating from in-line. First, we clearly propose an optimization method and a criterion which structure graylevel co-occurrence matrix parameters in TEC algorithm. Furthermore, the matrix to measure the difference between multi-traces is constructed by texture technique, resulting in horizontal constraints of texture coherence attribute. Compared with the C1 algorithm, the TEC algorithm based on graylevel matrix is of the feature that is multi-direction information fusion and keeps the simplicity and high speed, even it is of multi-trace horizontal constraint, leading to significantly improved resolution. The practical application of the TEC algorithm shows that the TEC attribute is superior to both the C1 attribute and amplitude attribute in identifying faults and channels, and it is as successful as the third generation coherence.
The study of earth masses requires numerical methods that provide the quantification of the safety factor without requiring detrimental assumptions. For that, equilibrium analysis can perform fast computations but require assumptions that limit its potentiality. Limit analysis does not require detrimental assumptions but are numerically demanding. This work provides a new approach that combines the advantage of both the equilibrium method and the limit analysis. The defined hybrid model allows probabilistic analysis and optimization approaches without the assumption of interslice forces. It is compared with a published case and used to perform probabilistic studies in both a homogeneous and a layered foundation. Analyses show that the shape of the density probability functions is highly relevant when computing the probability of failure, and soil elasticity hardly affects the safety of factor of the earth mass.
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot’s classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, considering the changes of pile shape (such as, taper angle and diameters of pile base, etc.), the load-transfer of special-shaped pile was built. The accuracy of the developed simplified approach was verified by numerical simulation model with the same condition. Then, the influence factors, such as, taper angles, the diameter of pile base, surcharge, and pile-soil interface parameters were analyzed and discussed. The results show that the developed simplified approach can calculate NSF of special-shaped pile under surcharge effectively. A limited parametric study indicates that in many practical situations special-shaped piles (such as belled wedge pile shown in this work) offer a design option that is more economical than traditional uniform cross-section piles.
The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite element method. Parametric analyses including the degree of inclination and the distance between soil and pile are carried out herein. When the displacement of soil on the left side and right side of a pile is identical, deformation of a vertical pile and an inclined pile is highly close in both cases of surcharge load and uniform soil movement. When the couple effect of soil displacement and axial load occurs, settlement of an inclined pile is greater than that of a vertical pile under the same axial load, and bearing capacity of an inclined pile is smaller than that of a vertical pile. This is quite different from the case when the inclined pile is not affected by soil displacement. For inclined piles, P-Δ effect of axial load would lead to a large increase in bending moment, however, for the vertical pile, P-Δ effect of axial load can be neglected. Although the direction of inclination of piles is reverse, deformation of piles caused by uniform soil movement is totally the same. For the inclined piles discussed herein, bending moment (−8 m to −17 m under the ground) relies heavily on uniform soil movement and does not change during the process of applying axial load. When the thickness of soil is less than the pile length, the greater the thickness of soil, the larger the bending moment at lower part of the inclined pile. When the thickness of soil is larger than the pile length, bending moment at lower part of the inclined pile is zero.
The measurement of surface stresses in surrounding rocks with the use of a relief method of annular hole-drilling was studied by numerical analysis. The stress relief process by hole-drilling was then simulated with the use of finite element method. The influences of the borehole diameter (d), the initial stresses and the ratio of the initial principle stresses on the variations of the remained stress and the released stress in function of the relief depth (h) were discussed. The relation between the non-dimensional ratio of the released principle strains and that of the initial principle stresses, and the effect of the elastic modulus and the Poisson ratio of the rock mass on the stress relief curves were studied. The results show that the stress relief behavior formulated with the non-dimensional ratio of the released stress and the ratio of h/d is only sensitive to the ratio of the initial principle stresses and the Poisson ratio. The stresses are completely released when h equals 1.6d, and the tensile stresses take place on the bore core surface in the relief measurement process. Finally, a non-complete relief method of annular hole-drilling for measuring surface stress in surrounding rocks is proposed and the procedure is presented.
A series of centrifuge model tests exploring the effects of different types of slurry on long-trench stability in soft clay were conducted. The influence of groundwater conditions relative to trench stability was examined by constructing long trenches using different slurries. The soil deformation and surface settlement induced by the excavation of the trench are found to be closely related to slurry type and excavation depth of the long trench. Increasing the bentonite concentration of the slurry has beneficial effects on stability: 1) larger particles can improve local and global stability in cases where filter cakes do not form, and 2) larger viscosity can promote filter cake formation on the walls of long trenches excavated in soft clay and enhance their stability.
In order to examine the effect of load-induced transverse cracks on the chloride penetration in flexural concrete beams, two different concretes, Portland cement concrete (PCC) and fly ash concrete (FAC), were tested with various crack widths. Total 14 reinforced concrete (RC) beams, ten of which were self-anchored in a three-point bending mode, were immersed into a 5% NaCl solution with the condition of dry-wet cycles. Then, the free chloride ion contents were determined by rapid chloride testing (RCT) method. Based on the proposed analytical models of chloride penetration in sound and cracked concrete subjected to dry-wet cycles, the apparent chloride diffusion coefficient and chloride diffusivity of concrete were discussed. It can be found that the performance of chloride diffusivity in both concretes will be improved with the increase of crack width, and that the influence of convection action will also be augmented. Based on the two samples obtained in sound concrete after 15 and 30 cycles, the time-exponent, m, for chloride diffusion coefficient was determined to be 0.58, 0.42, 0.62 and 0.77 for PCC1, PCC2, FAC1 and FAC2 specimens, respectively. Finally, two influencing factors of fly ash content and crack width on chloride diffusivity were obtained by regression analysis of test data, and it can be seen that factors kf and kw can be expressed with quadratic polynomial functions of fly ash content, f, and crack width, w, respectively.
Utilizing the acoustic emission (AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage evolution to acoustic emission parameters was proposed by incorporating the AE rate process theory. The AE monitoring results indicate that damages occur in both elastic and plastic phases of steel strand. In elastic phase, AE signals are mainly sent out from the micro damage due to the surface friction among the wires of steel strand, while in plastic phase, AE signals emitted from the plastic deformation of wires. In addition, the AE cumulative parameters curves closely resemble the loading curve. The AE cumulative parameters curves can well describe the damage evolution process including the damage occurrence and damage development for steel strands. It is concluded that the AE technique is an effective and useful nondestructive technique for evaluating the damage characteristics of steel strand.
Using structured mesh to discretize the calculation region, the wind velocity and pressure distribution in front of the wind barrier under different embankment heights are investigated based on the Detached Eddy Simulation (DES) with standard Spalart-Allmaras (SA) model. The Reynolds number is 4.0×105 in this calculation. The region is three-dimensional. Since the wind barrier and trains are almost invariable cross-sections, only 25 m along the track is modeled. The height of embankment ranges from 1 m to 5 m and the wind barrier is 3 m high. The results show that the wind speed changes obviously before the wind barrier on the horizontal plane, which is 4.5 m high above the track. The speed of wind reduces gradually while approaching the wind barrier. It reaches the minimum value at a distance about 5 m before the wind barrier, and increases dramatically afterwards. The speed of wind at this location is linear with the speed of far field. The train aerodynamic coefficients decrease sharply with the increment of the embankment height. And they take up the monotonicity. Meanwhile, when the height increases from 3 m to 5 m, they just change slightly. It is concluded that the optimum anemometer location is nearly 5 m in front of the wind barrier.