Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test, differential scanning calorimetric (DSC), energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transition electron microscopy (TEM), respectively. The results show that both tensile strength and hardness increase first and then decrease with temperature at constant holding time of 30 min with maximum strength and hardness appearing at 520 °C. Tensile strength, hardness and elongation of samples treated at 520 °C for 30 min are 566 MPa (σb), 512 MPa (σ0.2), HB 148 and 8.23% (δ), respectively. There are certain amount of fine T1 (Al2CuLi) phase dispersing among Al substrates according to TEM images. This may result in mixed fracture morphology with trans-granular and inter-granular delamination cracks observed in SEM images.
A solid state synthesis of ultrafine/nanocrystalline WC-10Co composite powders was reported from WO3, Co3O4 and carbon powders after reduction and carburization at relatively low temperatures in a short time under pure H2 atmosphere. The effects of ball milling time and reaction temperature on the preparation of ultrafine/nanocrystalline WC-Co composite powders were studied using X-ray diffraction and scanning electron microscope (SEM). The results show that fine mixed oxide powders (WO3, Co3O4 and carbon powders) can be obtained by long time ball milling. Increasing the reaction temperature can decrease the formation of Co3W3C and graphite phases and increase the WC crystallite size. Long-time ball milling and high reaction temperature are favorable to obtain fine and pure composite powders consisting of nanocrystalline WC from WO3, Co3O4 and carbon powders.
The effect of two alkylpyridinium ionic liquids (py-iLs) including N-butylpyridinium hydrogen sulfate (BpyHSO4) and N-hexylpyridinium hydrogen sulfate (HpyHSO4) on the kinetics of copper electrodeposition from acidic sulfate solution was investigated by cyclic voltammetry and potentiodynamic polarization measurements. Results from cyclic voltammetry indicate that these py-iLs have a pronounced inhibiting effect on Cu2+ electroreduction and there exists a typical nucleation and growth process. Kinetic parameters such as Tafel slope, transfer coefficient and exchange current density obtained from Tafel plots, lead to the conclusion that py-iLs inhibit the charge transfer by slightly changing the copper electrodeposition mechanism through their adsorption on the cathodic surface. In addition, scanning electron microscope (SEM) and X-ray diffraction analyses reveal that the presence of these additives leads to more leveled and fine-grained cathodic deposits without changing the crystal structure of the electrodeposited copper but strongly affects the crystallographic orientation by significantly inhibiting the growth of (111), (200) and (311) planes.
The separation of rhenium from molybdenum in aqueous solution has always been a problem in hydrometallurgy. The separation of rhenium from the electro-oxidation leachate of molybdenite and its mechanism were investigated. The results show that pH of the leachate significantly affects adsorption rate compared with other experimental parameters. When temperature is 30 °C, pH=8, and adsorbing time is 1 h, adsorption rates of rhenium and molybdenum are 93.46% and 3.57%, respectively, and separation factor of D301 resin for rhenium and molybdenum is 169.56. In addition, the separation factor is higher when the initial molybdenum concentration in model solution is increased. The saturated adsorption capacity of D301 resin for molybdenum and rhenium calculated based on simulated results are 4.263 3 mmol/g and 4.235 5 mmol/g, respectively. D301 resin is an effective separation material of rhenium from electric-oxidation leachate of molybdenite. The adsorption kinetics results also show that the adsorption of rhenium is easier than that of molybdenum, and the adsorption process of D301 for rhenium and molybdenum may be controlled by liquid film diffusion.
The solubilization of hardly soluble aluminum phosphate (AlPO4) by specific Penicillium spp. isolated from wheat rhizospheric soils was investigated in Pikovskaya agar and liquid medium, respectively. Most of the Penicillium isolates except P. simplicissimum AP11 and P. variabile AP15 developed clear transparent zone around the colony margin in plate assays. Results of broth assays show that the Penicillium isolates can efficiently solubilize aluminum phosphate in Pikovskaya liquid medium, and vary in their capabilities to release soluble phosphate from aluminum phosphate. All the isolates exhibit different abilities to lower the pH and increase the titratable acidity in the broth compared to the control. HPLC analysis shows that most of the isolates except the species of P. aurantiogriseum can excrete different concentrations of organic acids, including gluconic acid, citric acid, oxalic acid, malic acid and tartaric acids, in the broth. The release of soluble phosphate by the isolate P. oxalicum AP2, which is the best solubilizer of aluminum phosphate among the isolates, is accompanied by a significant drop of pH and an obvious rise of titratable acidity during 7 d of aluminum phosphate-solubilizing experiments. The effects of temperature, initial pH, concentration of aluminum phosphate and shaking speed on aluminum phosphate solubilization by P. oxalicum AP2 were also investigated, and the maximum contents of soluble phosphate released are recorded at temperature 30 °C, initial pH 6, aluminum phosphate concentration 20 g/L, and shaking speed 160 r/min.
A simple and facile gas chromatography-mass spectrometer (GC-MS) fingerprint of Su-He-Xiang-Wan (SHXW) was developed, the similarity analysis was conducted, and attribution of the major characteristic peaks was identified for SHXW quality control. GC-MS analysis was performed on a QP2010 instrument (Shimadzu, Japan) equipped with a capillary column of RTX-5MS. The column temperature was initiated at 50 °C, held for 5 min, increased at the rate of 3 °C/min to 120 °C, held for 2 min, and then increased at the rate of 4 °C/min to 220 °C, held for 10 min. Helium carrier gas was used at a constant flow rate of 1.3 mL/min. Mass conditions were ionization voltage, 70 eV; injector temperature, 250 °C; ion source temperature, 250 °C; splitting ratio, 30:1; full scan mode in the 40–500 Da mass ranges with rate of 0.2 s per scan. Attribution of the major characteristic peaks was identified for SHXW by comparing the chemical standards, references of Chinese herbal medicines and the negative controls of prescription samples (NC) of SHXW. With the help of the temperature-programmed retention indices (PTRIs) used together with mass spectra and chemical standards, 25 major characteristic peaks have been identified. Nine volatile medicinal materials were identified in the prescription of SHXW by attributing to the 27 major characteristic peaks. The results demonstrate that the proposed method is a powerful approach to quality control of complex herbal medicines.
A analyzed model of gear with wheel hub, web and rim was derived from the Mindlin moderate plate theory. The gear was divided into three annular segments along the locations of the step variations. Traverse displacement, rotation angle, shear force and flexural moment were equal to ensure the continuity along the interface of the wheel hub, web and rim segments. The governing differential equations for harmonic vibration of annular segments were derived to solve the gear vibration problem. The influence of hole to diameter ratios, segment thickness ratios, segment location ratios, Poisson ratio on the vibration behavior of stepped circular Mindlin disk were calculated, tabletted and plotted. Comparisons were made with the frequencies arising from the presented method, finite elements method, and structure modal experiment. The result correlation among these three ways is very good. The largest error for all frequencies is 5.46%, and less than 5% for most frequencies.
A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange’s equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.
A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral-differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov’s indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.
Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric power steering. In view of the interference from road random signal and sensor noise in the novel active steering system, the H∞ control model of the novel active steering system was built. With satisfying steering feel, good robust performance and steering stability being the control objectives, the H∞ controller for the novel active front steering (AFS) system was designed. The simulation results show that the novel AFS system with H∞ control strategy can attenuate the road interference quickly, and there is no resonance peak in the bode diagram. It can make the driver obtain more useful information in the low frequency range, and attenuate the road interference better in the high frequency range, thus the driver can get more satisfying road feeling. Therefore, the designed H∞ controller can synthesize the advantages of both robust performance and robust stability, and has certain contribution to the design of novel AFS system.
A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller’s structure. The complicated model was solved with iteration planning algorithm based on Newton search. The model is proved logical and credible by comparing calculated results and measured data. Then, the relationship between water flow velocity, inlet water temperature, furnace temperature and roller cross section temperature, outlet water temperature, water temperature rise, cooling water heat absorption was studied. The conclusions and recommendations are mainly as follows: 1) Cooling water temperature rise decreases with the increase of water flow velocity, but it has small relationship with inlet water temperature; 2) In order to get little water scale, inlet water temperature should be controlled below 30 °C. 3) The cooling water flow velocity should be greater than critical velocity. The critical velocity is 0.07 m/s and water flow velocity should be controlled within 0.4–0.8 m/s. Within this velocity range, water cooling efficiency is high and water temperature rise is little. If cooling water velocity increases again, heat loss will increase, leading to energy wasting.
Energy efficiency is a primary consideration in a wireless sensor network (WSN). This is also a major parameter when designing a medium access control (MAC) protocol for WSNs. Hierarchical clustering structure is regarded suitable for WSNs due to its good performance in energy conservation. In this work, an adequately flexible mechanism for clustering WSNs is designed, in which some creative or promotional metrics are utilized, such as cluster head selection algorithm, cluster optional reconstruction, interested data transmission, multiple path routing protocol. All these strategies were cooperated to maximize energy saving of whole system. An appropriate MAC protocol for this mechanism is proposed, by flexibly switching the status of diverse sensor nodes in different strategies. The simulation results show that the proposed MAC protocol is suitable for clustering WSNs and performs well in aspects of energy efficiency, flexibility and scalability.
An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism that could be used to reduce the complexity of a search space, a mechanism for development of highly specialized detector sets as well as a selective mechanism used in directing subsets of detectors to be activated when certain danger signals are present. It is shown that DCs, primed by different danger signals, provide a basis for different anomaly detection pathways. Different antigen-peptides are developed based on different danger signals present, and these peptides are presented to different adaptive layer detectors that correspond to the given danger signal. Experiments are then undertaken that compare current approaches, where a full antigen structure and the whole repertoire of detectors are used, with the proposed approach. Experiment results indicate that such an approach is feasible and can help reduce the complexity of the problem by significant levels. It also improves the efficiency of the system, given that only a subset of detectors are involved during the detection process. Having several different sets of detectors increases the robustness of the resulting system. Detectors developed based on peptides are also highly discriminative, which reduces the false positives rates, making the approach feasible for a real time environment.
A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set of sensors. Then, a hybrid estimation algorithm was designed to compute the estimates of the continuous and discrete states of the SLHS based on the observations from the selected sensors. As the sensor scheduling algorithm is designed such that the Bayesian decision risk is minimized, the true discrete state can be better identified. Moreover, the continuous state estimation performance of the proposed algorithm is better than that of hybrid estimation algorithms using only predetermined sensors. Finally, the algorithms are validated through an illustrative target tracking example.
A wireless body area network (WBAN) allows integration of low power, invasive or noninvasive miniaturized sensors around a human body. WBAN is expected to become a basic infrastructure element for human health monitoring. The Task Group 6 of IEEE 802.15 is formed to address specific needs of body area network. It defines a medium access control layer that supports various physical layers. In this work, we analyze the efficiency of simple slotted ALOHA scheme, and then propose a novel allocation scheme that controls the random access period and packet transmission probability to optimize channel efficiency. NS-2 simulations have been carried out to evaluate its performance. The simulation results demonstrate significant performance improvement in latency and throughput using the proposed MAC algorithm.
A variable weight approach was proposed to handle the probability deficiency problem in the evidential reasoning (ER) approach. The probability deficiency problem indicated that the inadequate information in the assessment result should be less than that in the input. However, it was proved that under certain circumstances, the ER approach could not solve the probability deficiency problem. The variable weight approach was based on two assumptions: 1) the greater weight should be given to the rule with more adequate information; 2) the greater weight should be given to the rules with less disparate information. Assessment results of two notional case studies show that 1) the probability deficiency problem is solved using the proposed variable weight approach, and 2) the information with less inadequacy and more disparity is provided for the decision makers to help reach a consensus.
This work aims to implement expert and collaborative group recommendation services through an analysis of expertise and network relations NTIS. First of all, expertise database has been constructed by extracting keywords after indexing national R&D information in Korea (human resources, project and outcome) and applying expertise calculation algorithm. In consideration of the characteristics of national R&D information, weight values have been selected. Then, expertise points were calculated by applying weighted values. In addition, joint research and collaborative relations were implemented in a knowledge map format through network analysis using national R&D information.
Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.
In this work, we analyzed only the patients of the NSTEMI (non ST-segment elevation myocardial infarction) who arrived at the hospital within 12 h after symptoms started. Using NSTEMI follow-up data within, the characteristics of the clinical data, the risk factor, and the blood tested in the hospital visit were analyzed for MACE (major adverse cardiac events) patients. MACE includes cardiac death, MI (myocardial infarction), Re-PCI, and CABG (coronary artery bypass graft). As a result, from the NSTEMI patients which can be followed up for over 12 m, NT-ProBNP (p=0.014) and age (p=0.045) are found to be the independent risk factors related to MACE. Accordingly, they can be useful for the diagnosis and prognosis for NSTEMI patients as a biomarker.
Study of fuzzy entropy and similarity measure on intuitionistic fuzzy sets (IFSs) was proposed and analyzed. Unlike fuzzy set, IFSs contain uncertainty named hesitance, which is contained in fuzzy membership function itself. Hence, designing fuzzy entropy is not easy because of many entropy definitions. By considering different fuzzy entropy definitions, fuzzy entropy on IFSs is designed and discussed. Similarity measure was also presented and its usefulness was verified to evaluate degree of similarity.
Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation’s initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general boundary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.
Geosynthetic-reinforced and pile-supported (GRPS) embankment has been increasingly constructed in a large number of regions and for a wide range of projects in the past decades. However, many disadvantages are exposed through a lot of applications on conventional technique of GRPS embankment (called CT embankment), i.e., intolerable settlement and lateral displacement, low geosynthetic efficiency, etc. In view of these disadvantages, the fixed geosynthetic technique of GRPS embankment (called FGT embankment) is developed in this work. In this system, the geosynthetic is fixed on the pile head by the steel bar fulcrum and concrete fixed top. The principles and construction techniques involved in the FGT embankment are described firstly. Then, the numerical analysis method and two-stage analysis method are used to study the performance of FGT embankment, respectively. It is shown that the FGT embankment can provide a better improvement technique to construct a high embankment over soft ground.
Soil-bentonite (SB) vertical slurry cutoff wall is a useful treatment for urban industrial contaminated sites. Due to the clay-heavy metal interaction, significant changes would occur in the engineering behavior of SB cutoff walls. However, previous study is limited to kaolinitic soils or montmorillonitic soils along using solidum chloride and/or calcium chloride as target contaminant. In this work, a series of oedometer tests were conducted to investigate the effects of lead (Pb) on the compressibility and the permeability of kaolin-bentonite (KB) mixtures, a simplified model of in-situ SB cutoff wall backfills. In addition, sedimentation tests were conducted to interpret the mechanism controlling the change of compressibility and permeability from the perspective of soil fabric. The Pb-contaminated KB mixtures for oedometer tests and sedimentation tests were prepared with bentonite contents of 0, 5%, 10%, and 15% by dry mass, and they were mixed with pre-determined volume of lead nitrate solution based on designed Pb concentration and solid-to-solution ratio. The Pb concentration was controlled as 0, 0.1, 0.5, 1.0, 5.0, 10, and 50 mg/g with a solid-to-solution ratio of approximate 0.5. The prepared KB mixtures with bentonite contents of 0, 5%, and 10% were chosen for the sedimentation tests. They were freeze-dried and mixed with DDI with a solid-to-solution ratio of 10 g/100 mL. The results indicate that pH, compressibility, and permeability of KB mixture changed considerably with respect to Pb concentration. It is concluded that the fabric of KB mixture, depending on the particle-particle interaction subjected to different ranges of pH and Pb concentration, governs the sedimentation behavior and permeability. The results of liquid limit (wL) cannot be explained in terms of the sedimentation behavior since it is only ionic-dependent.
Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure’s aseismatic stability can be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam’s right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM’s capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.
The discrete element method was used to investigate the microscopic characteristics of granular materials under simple shear loading conditions. A series of simple tests on photo-elastic materials were used as a benchmark. With respect to the original experimental observations, average micro-variables such as the shear stress, shear strain and the volumetric dilatancy were extracted to illustrate the performance of the DEM simulation. The change of anisotropic density distributions of contact normals and contact forces was demonstrated during the course of simple shear. On the basis of microscopic characteristics, an analytical approach was further used to explore the macroscopic behaviors involving anisotropic shear strength and anisotropic stress-dilatancy. This results show that under simple shear loading, anisotropic shear strength arises primarily due to the difference between principal directions of the stress and the fabric. In addition, non-coaxiality, referring to the difference between principal directions of the strain rate and the stress, generates less stress-dilatancy. In particular, the anisotropic hardening and anisotropic stress-dilatancy will reduce to the isotropic hardening and the classical Taylor’s stress-dilatancy under proportional loading.
Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not well investigated. In this work, a number of field pullout tests of pressure grouted soil nails were conducted to estimate the pullout resistance of soil nails. The effective bond lengths of field soil nails were accurately controlled by a new grouting packer system. Typical field test results and the related comparison with typical laboratory test results reveal that the apparent coefficient of friction (ACF) decreases with the increase of overburden soil pressure when grouting pressure is constant, but increases almost linearly with the increase of grouting pressure when overburden pressure (soil depth) is unchanged. Water contents of soil samples at soil nail surfaces show obvious reductions compared with the results of soil samples from drillholes. After soil nails were completely pulled out of the ground, surface conditions of the soil nails and surrounding soil were examined. It is found that the water content values of the soil at the soil/nail interfaces decrease substantially compared with those of soil samples extracted from drillholes. In addition, all soil nails expand significantly in the diametrical direction after being pulled out of ground, indicating that the pressurized cement grout compacts the soil and penetrates into soil voids, leading to a corresponding shift of failure surface into surrounding soil mass significantly.
During CO2 injection in deep saline aquifers, salt precipitation happens around the injection well because of capillary driven back flow, inducing permeability impairment. The permeability impairment affects CO2 injectivity and migration. Different values of three characteristic parameters for capillary pressure function (air entry pressure, empirical parameter m and liquid residual saturation) as well as input absolute value of maximum capillary are chosen in numerical simulation to figure out their effects on salt precipitation. Verma & Pruess model is then used for quantifying permeability impairment. Results show that permeability decreases with higher air entry pressure, larger liquid residual saturation, and especially smaller value of empirical parameter m. To enhance CO2 injectivity and avoid blocking of CO2 migration, a homogenous formation with large pore size should be chosen before CO2 injection into deep saline aquifer.
Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to the complexity of piping. The focus of the present work is to propose a new fluid-solid coupling model to eliminate the shortcomings of existing work. A “pseudo-liquid” assumption is suggested to simulate the particle movement in the erosion process. Then, based on the mass and momentum conservations of the moving particles and flowing water, a new two-flow model is established by using the continuity equations and motion equations. In the model, the erosion rate of soil is determined with a particle erosion law derived from tests results of STERPI. And ERGUN’s empirical equation is used to determine the interaction forces between the liquid and the solid. A numerical approach is proposed to solve the model with the finite volume method and SIMPLE algorithm. The new model is validated with the tests results of STERPI. And the soil erosion principles in piping are also explored.
Prediction of the state of roof collapse is a big challenge in tunnel engineering, while the limit analysis theory makes it possible to derive the analytical solutions of the collapse mechanisms. In this work, an exact solution of collapsing shape in shallow underwater tunnel is obtained by using the variation principle and the upper bound theorem based on nonlinear failure criterion. Numerical results under the effect of river water and supporting pressure are derived and discussed. The maximum water depth above the river bottom surface is determined under a given buried depth of shallow cavities and the critical depth of roof collapse is obtained under a constant river depth. In comparison with the previous results, the present solution shows a good agreement with the practical results.
The state of roof collapse in tunnels is actually three-dimensional, so constructing a three-dimensional failure collapse mechanism is crucial so as to reflect the realistic collapsing scopes more reasonably. According to Hoek-Brown failure criterion and the upper bound theorem of limit analysis, the solution for describing the shape of roof collapse in circular or rectangular tunnels subjected to seepage forces is derived by virtue of variational calculation. The seepage forces calculated from the gradient of excess pore pressure distribution are taken as external loading in the limit analysis, and it is of great convenience to compute the pore pressure with pore pressure coefficient. Consequently, the effect of seepage forces is taken as a work rate of external force and incorporated into the upper bound limit analysis. The numerical results of collapse dimensions with different rock parameters show great validity and agreement by comparing with the results of that with two-dimensional failure mechanism.
Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress-strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.
Loess is widely distributed in China and the Loess Plateau is one of the major areas where strong earthquakes often take place. The seismic amplification effects were discovered in the Plateau during the Wenchuan Ms8.0 earthquake and some other strong events. Based on earth tremor observation, borehole exploration and site seismic response analysis, the site effects of topography of Loess Yuan on ground motion were investigated in details. The earth tremor investigation shows that predominant frequencies at the bottom sites of Loess Yuan are greater than those at the top obviously. The sites seismic response analysis shows that the Loess Yuan may amplify peak ground acceleration (PGA) by 1.44–2.0 times. Therefore, site effects of mountains and loess topography on ground motion should be taken account into in seismic design in loess regions.
In early morning of Aug 8th, 2010, the rain-triggered tremendous debris flows broke out simultaneously at the Sanyanyu ravine and Luojiayu ravine, which locate in the north part of Zhouqu County town. The debris flow is the most severe event of the same kind of disasters in the past sixty years in China, which caused great losses of people’s lives and properties. Based on field investigation, remote sensing image interpretation and analysis of local climatological data, the local topographical conditions, active tectonic movement, massive debris source and torrential rains were the main formation causes which induced the catastrophic debris flows. Moreover, detailed geological surveys were carried out following the disaster, the other geological potential hazard sites were found out, and the geological and seismic hazard assessment has been put into practice. At last, scientific and appropriate countermeasures have been suggested to prevent and mitigate the extraordinarily serious debris flow.