Composition genes in materials

Shuang Zhang , Qing Wang , Chuang Dong

Journal of Materials Informatics ›› 2021, Vol. 1 ›› Issue (2) : 8

PDF
Journal of Materials Informatics ›› 2021, Vol. 1 ›› Issue (2) :8 DOI: 10.20517/jmi.2021.04
Research Article
Research Article

Composition genes in materials

Author information +
History +
PDF

Abstract

High-performance materials always possess specific chemical compositions. The present work points out that the composition genes, which are the basic structural units that serve as the composition carriers, are actually the molecule-like chemical units. Friedel oscillations, in combination with the cluster-plus-glue-atom model, are fully presented to show how to uncover the composition genes hidden in chemical short-range orders in any material. Examples are given in three categories of materials, i.e., metallic alloys including solid solutions and metallic glasses, inorganic compounds as well as relevant glasses, and polymers. Furthermore, materials can be classified into single-, dual-, and multi-gene types. The proposition of composition genes facilitates the understanding of prevailing materials and can be a useful tool to guide the exploration of new composition space.

Keywords

Composition genes / chemical units / cluster-plus-glue-atom model / Friedel oscillations

Cite this article

Download citation ▾
Shuang Zhang, Qing Wang, Chuang Dong. Composition genes in materials. Journal of Materials Informatics, 2021, 1(2): 8 DOI:10.20517/jmi.2021.04

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kittel C.Introduction to solid state physics.2005;8th edHobokenJohn Wiley & Sons

[2]

Dong C,Qiang JB.From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses..J Phys D: Appl Phys2007;40:R273-91

[3]

Dong C,Zhang S.Review of structural models for the compositional interpretation of metallic glasses..Int Mater Rev2020;65:286-96

[4]

Mackay AL.Structuration..J Appl Crystallogr1973;6:284-9

[5]

Mackay AL,Gotoh K.The closest packing of equal spheres on a spherical surface..Acta Cryst A1977;33:98-100

[6]

Dong C,Dubois JM.Hume-rothery phases with constant e/a value and their related electronic properties in Al-Cu-Fe(-Cr) quasicrystalline systems..Mater Sci Forum1994;150-151:403-16

[7]

Qiang J,Bao C.Formation rule for Al-based ternary quasi-crystals: Example of Al-Ni-Fe decagonal phase..J Mater Res2001;16:2653-60

[8]

Wang YM,Wong CH,Dong C.Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion..J Mater Res2003;18:642-8

[9]

Wang Y.The e/a factor governing the formation and stability of (Zr76Ni24)1-xAlx bulk metallic glasses..Scripta Materialia2003;48:1525-9

[10]

Feng D.Condensed state physics.2012;BeijingHigh Education Press

[11]

Ziman JM.Models of disorder - the theoretical physics of homogeneously disordered systems.1979;CambridgeCambridge University Press

[12]

Bragg WL.The effect of thermal agitation on atomic arrangement in alloys..Proc R Soc Lond A1934;145:699-730

[13]

Bethe HA.Statistical theory of superlattices..Proc R Soc Lond A1935;150:552-75

[14]

Peierls R.Statistical theory of superlattices with unequal concentrations of the components..Proc R Soc Lond A1936;154:207-22

[15]

Kirkwood JG.Order and disorder in binary solid solutions..J Chem Phys1938;6:70-5

[16]

Cowley JM.X-ray measurement of order in single crystals of Cu3Au..J Appl Phys1950;21:24-30

[17]

Cowley JM.An approximate theory of order in alloys..Phys Rev1950;77:669-75

[18]

Cowley JM.Short- and long-range order parameters in disordered solid solutions..Phys Rev1960;120:1648-57

[19]

Cowley JM.Short-range order and long-range order parameters..Phys Rev1965;138:A1384-9

[20]

Friedel J.XIV. The distribution of electrons round impurities in monovalent metals..The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science2010;43:153-89

[21]

Friedel J.Electronic structure of primary solid solutions in metals..Adv Phys1954;3:446-507

[22]

Friedel J.Metallic alloys..Nuovo Cim1958;7:287-311

[23]

Langer J.The shielding of a fixed charge in a high-density electron gas..J Phys Condens Matter1960;12:196-205

[24]

Heine V.Pseudopotential theory of cohesion and structure.1970;Elsevier249-463

[25]

Harrison WA.Solid state theory.1970;New YorkMcGraw-Hill, Inc.

[26]

Ziman JM.Principles of the theory of solids.1972;CambridgeCambridge university press

[27]

Häussler P.A new hume-rothery phase with an amorphous structure in noble-metal/simple-metal alloys..J Phys Colloques1985;46:C8-361-5

[28]

Kroha J,Kopp T.Coulomb interaction and disorder at q=2kF: a novel instability of the fermi sea and implications for amorphous alloys..Phys Rev Lett1995;75:4278-81

[29]

Häussler P.Interrelations between atomic and electronic structures-Liquid and amorphous metals as model systems..Physics Reports1992;222:65-143

[30]

Jiang B,Dong C.Exploration of phase structure evolution induced by alloying elements in Ti alloys via a chemical-short-range-order cluster model..Sci Rep2019;9:3404

[31]

Senkov O,Keppens V.Development and characterization of low-density ca-based bulk metallic glasses: an overview..Metall Mater Trans A2008;39:1888-900

[32]

Han G,Li F.The e/a values of ideal metallic glasses in relation to cluster formulae..Acta Materialia2011;59:5917-23

[33]

Luo L,Wang Y.24 electron cluster formulas as the ‘molecular’ units of ideal metallic glasses..Philos Mag2014;94:2520-40

[34]

Stainless Steel Branch of China Special Steel Enterprises AssociationStainless steel practical manual.2003;BeijingChina Science and Technology Press

[35]

Li Z,Zha Q,Qiang J.Composition design of superhigh strength maraging stainless steels using a cluster model. Progress in Natural Science:.Materials International2014;24:35-41

[36]

Wang Q,Jiang B.A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties..Scripta Materialia2016;120:85-9

[37]

Ma Y,Jiang B.Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions..Acta Mater2018;147:213-25

[38]

Hong HL,Dong C.Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys..Sci Rep2014;4:7065

[39]

Liu T,Wang Q,Dong C.Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V..Sci China Technol Sci2021;64:1732-40

[40]

Wang ZR,Wang YM.Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model..Acta Mater2016;111:366-76

[41]

Zhang S,Wang Z,Häussler P.Composition formulas of Ni-(Nb, Ta) bulk metallic glasses..Intermetallics2017;85:176-9

[42]

Li Y,Kalb JA.Matching glass-forming ability with the density of the amorphous phase..Science2008;322:1816-9

[43]

Massalski TB,Subramanian PR.Binary alloy phase diagrams.1990;2nd edUSAASM International

[44]

Zhang S,Wang Z,Häussler P.Spherical periodicity as structural homology of crystalline and amorphous states..Sci China Mater2018;61:409-16

[45]

Zhang S,Häussler P.Structural relationship between crystalline and amorphous states in Cu-(Zr, Ti) binary systems..J Phys Condens Matter2021;33:074001

[46]

Ma YP,Dong C.Composition formulas of binary eutectics..Sci Rep2015;5:17880

[47]

Wang Z,Qiang J,Zhao Y.Cluster-based composition interpretation of dual-phase glass-crystal alloys via the example of Mg49Cu42Y9..J Non Cryst Solids2021;566:120886

[48]

Zhang S.Dual-cluster interpretation of binary eutectics associated with hexagonal close-packed solid solution phases..Mater Lett2018;233:71-3

[49]

Han K,Qiang J.Dual-cluster formulas for eutectic-type bulk metallic glasses and experimental verification in Zr-Al-Fe-Cu system..2019;183:108142

[50]

Zhang S,Ma Y.Materials characteristics of thin films..VACUUM2020;57:11-8(in Chinese)

[51]

Zachariasen WH.The atomic arrangement in glass..J Am Chem Soc1932;54:3841-51

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/