High-performance materials always possess specific chemical compositions. The present work points out that the composition genes, which are the basic structural units that serve as the composition carriers, are actually the molecule-like chemical units. Friedel oscillations, in combination with the cluster-plus-glue-atom model, are fully presented to show how to uncover the composition genes hidden in chemical short-range orders in any material. Examples are given in three categories of materials, i.e., metallic alloys including solid solutions and metallic glasses, inorganic compounds as well as relevant glasses, and polymers. Furthermore, materials can be classified into single-, dual-, and multi-gene types. The proposition of composition genes facilitates the understanding of prevailing materials and can be a useful tool to guide the exploration of new composition space.
In recent years, the advent of machine learning (ML) in materials science has provided a new tool for accelerating the design and discovery of new materials with a superior combination of mechanical properties for structural applications. In this review, we provide a brief overview of the current status of the ML-aided design and development of metallic alloys for structural applications, including high-performance copper alloys, nickel- and cobalt-based superalloys, titanium alloys for biomedical applications and high strength steel. We also present our perspectives regarding the further acceleration of data-driven discovery, development, design and deployment of metallic structural materials and the adoption of ML-based techniques in this endeavor.
Understanding materials dynamics under extreme conditions of pressure, temperature, and strain rate is a scientific quest that spans nearly a century. Atomic simulations have had a considerable impact on this endeavor because of their ability to uncover materials’ microstructure evolution and properties at the scale of the relevant physical phenomena. However, this is still a challenge for most materials as it requires modeling large atomic systems (up to millions of particles) with improved accuracy. In many cases, the availability of sufficiently accurate but efficient interatomic potentials has become a serious bottleneck for performing these simulations as traditional potentials fail to represent the multitude of bonding. A new class of potentials has emerged recently, based on a different paradigm from the traditional approach. The new potentials are constructed by machine-learning with a high degree of fidelity from quantum-mechanical calculations. In this review, a brief introduction to the central ideas underlying machine learning interatomic potentials is given. In particular, the coupling of machine learning models with domain knowledge to improve accuracy, computational efficiency, and interpretability is highlighted. Subsequently, we demonstrate the effectiveness of the domain knowledge-based approach in certain select problems related to the kinetic response of warm dense materials. It is hoped that this review will inspire further advances in the understanding of matter under extreme conditions.
Casting aluminum alloys are commonly used in industries due to their excellent comprehensive performance. Alloying/microalloying and post-solidification heat treatments are the most common measures to tune the microstructure for enhancing their mechanical properties. However, it is very challenging to achieve accurate and efficient development of novel casting aluminum alloys using the traditional trial-and-error method. With the rapid development of computer technology, the computational thermodynamics (CT) in the framework of the CALculation of PHAse Diagram approach, the data-driven machine learning (ML) technique, and also their combinations have been proved to be effective approaches for the design of casting aluminum alloys. In this review, the state-of-the-art computational alloy design approaches driven by CT and ML techniques, as well as their combinations, were comprehensively summarized. The current status of the thermodynamic database for aluminum alloys, as the core for CT, was also briefly introduced. After that, a variety of successful case studies on the design of different casting aluminum alloys driven by CT, ML, and their combinations were demonstrated, including common applications, CT-driven design of Sc-additional Al-Si-Mg series casting alloys, and design of Srmodified A356 alloys driven by combing CT and ML. Finally, the conclusions of this review were drawn, and perspectives for boosting the computational design approach driven by combining CT and ML techniques were pointed out.