RUDIE: Robust approach for underwater digital image enhancement

V.Sidda Reddy , G.Ravi Shankar Reddy , K.Sivanagi Reddy

Journal of Electronic Science and Technology ›› 2024, Vol. 22 ›› Issue (4) : 100286

PDF (1310KB)
Journal of Electronic Science and Technology ›› 2024, Vol. 22 ›› Issue (4) : 100286 DOI: 10.1016/j.jnlest.2024.100286
research-article

RUDIE: Robust approach for underwater digital image enhancement

Author information +
History +
PDF (1310KB)

Abstract

Processing underwater digital images is critical in ocean engineering, biology, and environmental studies, focusing on challenges such as poor lighting, image de-scattering, and color restoration. Due to environmental conditions on the sea floor, improving image contrast and clarity is essential for underwater navigation and obstacle avoidance. Particularly in turbid, low-visibility waters, we require robust computer vision techniques and algorithms. Over the past decade, various models for underwater image enrichment have been proposed to address quality and visibility issues under dynamic and natural lighting conditions. This research article aims to evaluate various image improvement methods and propose a robust model that improves image quality, addresses turbidity, and enhances color, ultimately improving obstacle avoidance in autonomous systems. The proposed model demonstrates high accuracy compared to traditional models. The result analysis indicates the proposed model produces images with greatly improved visibility and exceptional color accuracy. Furthermore, research can unlock new possibilities for underwater exploration, monitoring, and intervention by advancing the state-of-the-art models in this domain.

Keywords

Computer vision / Digital image / Histogram / Image processing / Fuzzy logic

Cite this article

Download citation ▾
V.Sidda Reddy, G.Ravi Shankar Reddy, K.Sivanagi Reddy. RUDIE: Robust approach for underwater digital image enhancement. Journal of Electronic Science and Technology, 2024, 22(4): 100286 DOI:10.1016/j.jnlest.2024.100286

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare no conflicts of interest.

References

[1]

D.M. Kocak, F.R. Dalgleish, F.M. Caimi, Y.Y. Schechner, A focus on recent developments and trends in underwater imaging, Mar. Technol. Soc. J. 42 (1) (Mar. 2008) 52-67.

[2]

O.S. Vaidya, S.T. Gandhe, The study of preprocessing and postprocessing techniques of image stitching, in: Proc. of Intl. Conf. on Advances in Communication and Computing Technology (ICACCT), Sangamner, India, (2018), pp. 431-435.

[3]

D. Vijayalakshmi, M.K. Nath, A systematic approach for enrichmentof homogeneous background images using structural information, Graph, Models 130 (Dec. 2023) 101206.

[4]

Y.Y. Schechner, N. Karpel, Recovery of underwater visibility and structure by polarization analysis, IEEE J. Ocean. Eng. 30 (3) (Jul. 2005) 570-587.

[5]

Y. Yüksel, M. Alçı, M.E. Yüksel, Performance enrichmentof image impulse noise filters by image rotation and fuzzy processing, AEU-Intl. J. Electron. C. 64 (4) (Apr. 2010) 329-338.

[6]

Z.-J. Tang, L.-Y. Huang, X.-Q. Zhang, H. Lao, Robust image hashing based on color vector angle and canny operator, AEU-Intl. J. Electron. C. 70 (6) (Jun. 2016) 833-841.

[7]

R. Schettini, S. Corchs, Underwater image processing: State of the art of restoration and image enrichment methods, EURASIP J. Adv. Sig. Pr. 2010 (Apr. 2010) 746052: 1-14.

[8]

G.-Q. Cheng, J.-C. Huang, Z. Liu, L.-Z. Cheng, Image quality assessment using natural image statistics in gradient domain, AEU-Intl. J. Electron. C. 65 (5) (May 2011) 392-397.

[9]

B.L. McGlamery, A computer model for underwater camera systems, in: Proc. of SPIE 0208, Ocean Optics VI, Monterey, USA, (1980), pp. 221-231.

[10]

Y.Y. Schechner, Y. Averbuch, Regularized image recovery in scattering media, IEEE T. Pattern Anal. 29 (9) (Sept. 2007) 1655-1660.

[11]

K.-M. He, J. Sun, X.-O. Tang, Single image haze removal using dark channel prior, IEEE T. Pattern Anal. 33 (12) (Dec. 2011) 2341-2353.

[12]

N. Carlevaris-Bianco, A. Mohan, R.M. Eustice, Eustice, Initial results in underwater single image dehazing, in: Proc. of the OCEANS MTS/IEEE SEATTLE, Seattle, USA, (2010), pp. 1-8.

[13]

J.Y. Chiang, Y.C. Chen, Underwater image enrichmentby wavelength compensation and dehazing, IEEE Trans. Image Process. 21 (4) (Apr. 2012) 1756-1769.

[14]

X.-W. Zhao, T. Jin, S. Qu, Deriving inherent optical properties from background color and underwater image enhancement, Ocean Eng. 94 (Jan. 2015) 163-172.

[15]

Y.T. Peng, P.C. Cosman, Underwater image restoration based on image blurriness and light absorption, IEEE Trans. Image Process. 26 (4) (Apr. 2017) 1579-1594.

[16]

R. Fattal, D. Lischinski, M. Werman, Gradient domain high dynamic range compression, ACM Trans. Graph. 21 (3) (Jul. 2002) 249-256.

[17]

W.-J. Li, B. Gu, J.-T. Huang, S.-Y. Wang, M.-H. Wang, Single image visibility enrichmentin gradient domain, IET Image Process. 6 (5) (Jul. 2012) 589-595.

[18]

Z.-T. Mi, H. Zhou, Y.-J. Zheng, M.-H. Wang, Single image dehazing via multi-scale gradient domain contrast enhancement, IET Image Process. 10 (3) (Mar. 2016) 206-214.

[19]

K. Iqbal, M. Odetayo, A. James, R.A. Salam, A.Z.H. Talib, Enhancing the low quality images using unsupervised colour correction method, in: Proc. of the IEEE Intl. Conf. on Systems, Man and Cybernetics, Istanbul, Turkey, (2010), pp. 1703-1709.

[20]

H.-Y. Yang, P.-Y. Chen, C.-C. Huang, Y.-Z. Zhuang, Y.-H. Shiau, Low complexity underwater image enrichment based on dark channel prior, in: Proc. of the Second Intl. Conf. Innovations in Bio-inspired Computing and Applications(IBICA), Shenzhen, China, (2011), pp. 17-20.

[21]

M.S. Hitam, E.A. Awalludin, W.N.J.H.W. Yussof, Z. Bachok, Mixture contrast limited adaptive histogram equalization for underwater image enhancement, in: Proc. of the Intl. Conf. on Computer Applications Technology (ICCAT), Sousse, Tunisia, (2013), pp. 1-5.

[22]

C.-Y. Li, J.-C. Guo, S.-J. Chen, Y.-B. Tang, Y.-W. Pang, J. Wang, Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging, in: Proc. of the IEEE Intl. Conf. on Image Processing, ICIP), Phoenix, USA, (2016), pp. 1993-1997.

[23]

C.O. Ancuti, C. Ancuti, C. De Vleeschouwer, P. Bekaert, Color balance and fusion for underwater image enhancement, IEEE Trans. Image Process. 27 (1) (Jan. 2018) 379-393.

[24]

S.L. Wong, R. Paramesran, A. Taguchi, Underwater image enrichmentby adaptive gray world and differential gray-levels histogram equalization, Adv. Electr. Comput. Eng. 18 (2) (May 2018) 109-116.

[25]

H.-M. Liu, Q. Zhang, Y.-F. Hu, H. Zeng, B. Fan, Unsupervised multi-expert learning model for underwater image enhancement, IEEE/CAA J. Automatic. 11 (3) (Mar. 2024) 708-722.

[26]

C.Y. Jeong, K.D. Moon, M. Kim, An end-to-end deep learning approach for real-time single image dehazing, J.Real-Time Image Pr. 20 (1) (Apr. 2010) 12: 1-11.

[27]

S.Q. Duntley, Light in the sea, J. Opt. Soc. Am. 53 (2) (Feb. 1963) 214-233.

[28]

E.H. Land, The retinex, Am. Sci. 52 (2) (Jun. 1964) 247-264.

[29]

E.H. Land, J.J. McCann, Lightness and retinex theory, J. Opt. Soc. Am. 61 (1) (1971) 1-11.

[30]

X.-Y. Fu, P.-X. Zhuang, Y. Huang, Y.-H. Liao, X.-P. Zhang, X.-H. Ding, A retinex-based enhancing approach for single underwater image, in: Proc. of IEEE Intl. Conf. on Image Processing (ICIP), Paris, France, (2014), pp. 4572-4576.

[31]

K.-M. He, J. Sun, X.-O. Tang, Guided image filtering, in: Proc. of the 11th European Conf. on Computer Vision, Heraklion, Greece, (2010), pp. 1-14.

AI Summary AI Mindmap
PDF (1310KB)

41

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/