Sparse antenna array design methodologies: A review

Pan Wu , Yan-Hui Liu , Zhi-Qin Zhao , Qing-Huo Liu

Journal of Electronic Science and Technology ›› 2024, Vol. 22 ›› Issue (3) : 100276

PDF (1453KB)
Journal of Electronic Science and Technology ›› 2024, Vol. 22 ›› Issue (3) : 100276 DOI: 10.1016/j.jnlest.2024.100276
research-article

Sparse antenna array design methodologies: A review

Author information +
History +
PDF (1453KB)

Abstract

Designing a sparse array with reduced transmit/receive modules (TRMs) is vital for some applications where the antenna system's size, weight, allowed operating space, and cost are limited. Sparse arrays exhibit distinct architectures, roughly classified into three categories: Thinned arrays, nonuniformly spaced arrays, and clustered arrays. While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years, a comprehensive review of the latest development in sparse array synthesis is lacking. This work aims to fill this gap by thoroughly summarizing these techniques. The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency. Thus, this review is intended to assist researchers and engineers in related fields, offering a clear understanding of the development and distinctions among sparse array synthesis techniques.

Keywords

Clustered array / Nonuniformly spaced array / Sparse antenna array / Synthesis method / Thinned array

Cite this article

Download citation ▾
Pan Wu, Yan-Hui Liu, Zhi-Qin Zhao, Qing-Huo Liu. Sparse antenna array design methodologies: A review. Journal of Electronic Science and Technology, 2024, 22(3): 100276 DOI:10.1016/j.jnlest.2024.100276

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This work was supported by the National Natural Science Foundation of China under Grant No. U2341208.

Declaration of competing interest

The authors declare no conflicts of interest.

References

[1]

Y.-J. Guo, M. Ansari, N.J.G. Fonseca, Circuit type multiple beamforming networks for antenna arrays in 5G and 6G terrestrial and non-terrestrial networks, IEEE Journal of Microwaves 1 (3) (Jul. 2021) 704-722.

[2]

R.J. Mailloux, Phased Array Antenna Handbook, (second ed.), Artech House, Boston, (2005).

[3]

H. Unz, Linear arrays with arbitrarily distributed elements, Electronics Research Laboratory 60 (16) (1956) 1-57.

[4]

R. Willey, Space tapaering of linear and planar arrays, IRE T. Antenn. Propag. 10 (4) (Jul. 1962) 369-377.

[5]

M. Skolnik, J. Sherman, F. Ogg, Statistically designed density-tapered arrays, IEEE Trans. Antenn. Propag. 12 (4) (Jul. 1964) 408-417.

[6]

O.M. Bucci, T. Isernia, A.F. Morabito, A deterministic approach to the synthesis of pencil beams through planar thinned arrays, Prog. Electromagn. Res. 101 (Feb. 2010) 217-230.

[7]

M. Skolnik, G. Nemhauser, J. Sherman, Dynamic programming applied to unequally spaced arrays, IEEE Trans. Antenn. Propag. 12 (1) (Jan. 1964) 35-43.

[8]

R. Arora, N. Krisnamacharyulu, Synthesis of unequally spaced arrays using dynamic programming, IEEE Trans. Antenn. Propag. 16 (5) (Sept. 1968) 593-595.

[9]

R.L. Haupt, Thinned arrays using genetic algorithms, IEEE Trans. Antenn. Propag. 42 (7) (Jul. 1994) 993-999.

[10]

V. Murino, A. Trucco, C.S. Regazzoni, Synthesis of unequally spaced arrays by simulated annealing, IEEE Trans. Signal Process. 44 (1) (Jan. 1996) 119-122.

[11]

N.B. Jin, Y. Rahmat-Samii, Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations, IEEE Trans. Antenn. Propag. 55 (3) (Mar. 2007) 556-567.

[12]

M. Donelli, A. Martini, A. Massa, A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays, IEEE Trans. Antenn. Propag. 57 (8) (Aug. 2009) 2491-2495.

[13]

S. Vankayalapati, P. Lakshman, K.T.P.S. Kumar, et al., Application of binary particle swarm optimization algorithm for thinned planar antenna array synthesis, in: Proc. of 8th Intl. Conf. on Advanced Computing and Communication Systems, Coimbatore, India, (2022), pp. 1414-1418.

[14]

S. Mosca, M. Ciattaglia, Ant colony optimization to design thinned arrays, in: Proc. of IEEE Antennas and Propagation Society International Symposium, Albuquerque, USA, (2006), pp. 4675-4678.

[15]

B.V. Ha, M. Mussetta, P. Pirinoli, R.E. Zich, Modified compact genetic algorithm for thinned array synthesis, IEEE Antenn. Wirel. Pr. 15 (2016) 1105-1108.

[16]

J.-H. Zhang, X.-L. Mao, M. Zhang, J. Hirokawa, Q.H. Liu, Synthesis of thinned planar arrays based on precoded subarray structures, IEEE Antenn. Wirel. Pr. 22 (1) (Jan. 2023) 44-48.

[17]

W.P.M.N. Keizer, Linear array thinning using iterative FFT techniques, IEEE Trans. Antenn. Propag. 56 (8) (Aug. 2008) 2757-2760.

[18]

W.P.M.N. Keizer, Large planar array thinning using iterative FFT techniques, IEEE Trans. Antenn. Propag. 57 (10) (Oct. 2009) 3359-3362.

[19]

W.P.M.N. Keizer, Synthesis of thinned planar circular and square arrays using density tapering, IEEE Trans. Antenn. Propag. 62 (4) (Apr. 2014) 1555-1563.

[20]

X.-K. Wang, Y.-C. Jiao, Y.-Y. Tan, Gradual thinning synthesis for linear array based on iterative Fourier techniques, Prog. Electromagn. Res. 123 (2012) 299-320.

[21]

X.-K. Wang, Y.-C. Jiao, Y.-Y. Tan, Synthesis of large thinned planar arrays using a modified iterative Fourier technique, IEEE Trans. Antenn. Propag. 62 (4) (Apr. 2014) 1564-1571.

[22]

Y.-H. Liu, J.-X. Zheng, M. Li, Q.-K. Luo, Y. Rui, Y.J. Guo, Synthesizing beam-scannable thinned massive antenna array utilizing modified iterative FFT for millimeter-wave communication, IEEE Antenn. Wirel. Pr. 19 (11) (Nov. 2020) 1983-1987.

[23]

D. King, R. Packard, R. Thomas, Unequally-spaced, broad-band antenna arrays, IRE T. Antenn. Propag. 8 (2) (Jul. 1960) 380-384.

[24]

A. Maffett, Array factors with nonuniform spacing parameter, IRE T. Antenn. Propag. 10 (2) (Mar. 1962) 131-136.

[25]

J. Perini, M. Idselis, Note on antenna pattern synthesis using numerical iterative methods, IEEE Trans. Antenn. Propag. 19 (2) (Mar. 1971) 284-286.

[26]

R. Redlich, Iterative least-squares synthesis of nonuniformly spaced linear arrays, IEEE Trans. Antenn. Propag. 21 (1) (Jan. 1973) 106-108.

[27]

D.G. Kurup, M. Himdi, A. Rydberg, Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm, IEEE Trans. Antenn. Propag. 51 (9) (Sept. 2003) 2210-2217.

[28]

M. Li, Y.-H. Liu, Y.J. Guo, Design of sum and difference patterns by optimizing element rotations and positions for linear dipole array, IEEE Trans. Antenn. Propag. 69 (5) (May 2021) 3027-3032.

[29]

K.-S. Chen, X.-H. Yun, Z.-S. He, C.-L. Han, Synthesis of sparse planar arrays using modified real genetic algorithm, IEEE Trans. Antenn. Propag. 55 (4) (Apr. 2007) 1067-1073.

[30]

D.-C. Dai, M.-L. Yao, H.-G. Ma, W. Jin, F.-G. Zhang, An asymmetric mapping method for the synthesis of sparse planar arrays, IEEE Antenn. Wirel. Pr. 17 (1) (Jan. 2018) 70-73.

[31]

F.-X. Liu, Y.-H. Liu, K.-D. Xu, Y.-L. Ban, Q.-H. Liu, Y.J. Guo, Synthesizing uniform amplitude sparse dipole arrays with shaped patterns by joint optimization of element positions, rotations and phases, IEEE Trans. Antenn. Propag. 67 (9) (Sept. 2019) 6017-6028.

[32]

F.-X. Liu, Y.-H. Liu, F. Han, Y.-L. Ban, Y.J. Guo, Synthesis of large unequally spaced planar arrays utilizing differential evolution with new encoding mechanism and cauchy mutation, IEEE Trans. Antenn. Propag. 68 (6) (Jun. 2020) 4406-4416.

[33]

Y.-H. Liu, Z.-P. Nie, Q.-H. Liu, Reducing the number of elements in a linear antenna array by the matrix pencil method, IEEE Trans. Antenn. Propag. 56 (9) (Sept. 2008) 2955-2962.

[34]

Y.-H. Liu, Q.-H. Liu, Z.-P. Nie, Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method, IEEE Trans. Antenn. Propag. 58 (2) (Feb. 2010) 604-608.

[35]

Y.-H. Liu, Q.-H. Liu, Z.-P. Nie, Reducing the number of elements in multiple-pattern linear arrays by the extended matrix pencil methods, IEEE Trans. Antenn. Propag. 62 (2) (Feb. 2014) 652-660.

[36]

P.-F. Gu, G. Wang, Z.-H. Fan, R.-S. Chen, An efficient approach for the synthesis of large sparse planar array, IEEE Trans. Antenn. Propag. 67 (12) (Dec. 2019) 7320-7330.

[37]

H.-O. Shen, B.-H. Wang, X. Li, Shaped-beam pattern synthesis of sparse linear arrays using the unitary matrix pencil method, IEEE Antenn. Wirel. Pr. 16 (2017) 1098-1101.

[38]

H.-O. Shen, B.-H. Wang, Two-dimensional unitary matrix pencil method for synthesizing sparse planar arrays, Digit, Signal Process. 73 (Feb. 2018) 40-46.

[39]

G. Oliveri, A. Massa, Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays, IEEE Trans. Antenn. Propag. 59 (2) (Feb. 2011) 467-481.

[40]

F. Viani, G. Oliveri, A. Massa, Compressive sensing pattern matching techniques for synthesizing planar sparse arrays, IEEE Trans. Antenn. Propag. 61 (9) (Sept. 2013) 4577-4587.

[41]

G. Oliveri, E.T. Bekele, F. Robol, A. Massa, Sparsening conformal arrays through a versatile BCS-based method, IEEE Trans. Antenn. Propag. 62 (4) (Apr. 2014) 1681-1689.

[42]

A. Massa, P. Rocca, G. Oliveri, Compressive sensing in electromagnetics ––A review, IEEE Antenn. Propag. Mag. 57 (1) (Feb. 2015) 224-238.

[43]

G. Prisco, M. D'Urso, Maximally sparse arrays via sequential convex optimizations, IEEE Antenn. Wirel. Pr. 11 (Feb. 2012) 192-195.

[44]

B. Fuchs, Synthesis of sparse arrays with focused or shaped beampattern via sequential convex optimizations, IEEE Trans. Antenn. Propag. 60 (7) (Jul. 2012) 3499-3503.

[45]

P.-F. You, Y.-H. Liu, S.-L. Chen, K.-D. Xu, W.-W. Li, Q.-H. Liu, Synthesis of unequally spaced linear antenna arrays with minimum element spacing constraint by alternating convex optimization, IEEE Antenn. Wirel. Pr. 16 (Oct. 2017) 3126-3130.

[46]

P. Wu, Y.-H. Liu, F.-X. Liu, S.-W. Yang, J. Hu, Synthesis of sparse array with sum and difference patterns under minimum element spacing control by alternating linear programming optimization, IEEE Antenn. Wirel. Pr. 20 (6) (Jun. 2021) 1028-1032.

[47]

Y.-H. Liu, Y.-Q. Yang, P. Wu, et al., Synthesis of multibeam sparse circular-arc antenna arrays employing refined extended alternating convex optimization, IEEE Trans. Antenn. Propag. 69 (1) (Jan. 2021) 566-571.

[48]

B.-X. Gu, R.-X. Jiang, X.-S. Liu, Y.-W. Chen, Extreme sparse-array synthesis via iterative convex optimization and simulated-annealing expanded array, Electronics 12 (6) (Mar. 2023) 1401:1-140110.

[49]

D. Pinchera, M.D. Migliore, G. Panariello, Synthesis of large sparse arrays using IDEA (inflating-deflating exploration algorithm), IEEE Trans. Antenn. Propag. 66 (9) (Sept. 2018) 4658-4668.

[50]

L.-Y. Chen, Y.-H. Liu, Y.-L. Ban, S.-W. Yang, Y.J. Guo, Synthesis of large-scale planar isophoric sparse arrays using iterative least squares with nonredundant constraints (ILS-NRC), IEEE Trans. Antenn. Propag. 72 (5) (May 2024) 4232-4245.

[51]

R. Mailloux, Array grating lobes due to periodic phase, amplitude, and time delay quantization, IEEE Trans. Antenn. Propag. 32 (12) (Dec. 1984) 1364-1368.

[52]

R.L. Haupt, Optimized weighting of uniform subarrays of unequal size, IEEE Trans. Antenn. Propag. 55 (4) (Apr. 2007) 1207-1210.

[53]

P. Rocca, R.J. Mailloux, G. Toso, GA-based optimization of irregular subarray layouts for wideband phased arrays design, IEEE Antenn. Wirel. Pr. 14 (2015) 131-134.

[54]

P. Lopez, J.A. Rodriguez, F. Ares, E. Moreno, Subarray weighting for the difference patterns of monopulse antennas: joint optimization of subarray configurations and weights, IEEE Trans. Antenn. Propag. 49 (11) (Nov. 2001) 1606-1608.

[55]

P. Rocca, N. Anselmi, A. Polo, A. Massa, An irregular two-sizes square tiling method for the design of isophoric phased arrays, IEEE Trans. Antenn. Propag. 68 (6) (Jun. 2020) 4437-4449.

[56]

P. Rocca, L. Manica, A. Massa, An improved excitation matching method based on an ant colony optimization for suboptimal-free clustering in sum-difference compromise synthesis, IEEE Trans. Antenn. Propag. 57 (8) (Aug. 2009) 2297-2306.

[57]

D.A. McNamara, Synthesis of sub-arrayed monopulse linear arrays through matching of independently optimum sum and difference excitations, IEE Proceedings H 135 (5) (Oct. 1988) 293-296.

[58]

P. Rocca, L. Manica, A. Martini, A. Massa, Synthesis of large monopulse linear arrays through a tree-based optimal excitations matching, IEEE Antenn. Wirel. Pr. 6 (Sept) (2007) 436-439.

[59]

L. Manica, P. Rocca, A. Martini, A. Massa, An innovative approach based on a tree-searching algorithm for the optimal matching of independently optimum sum and difference excitations, IEEE Trans. Antenn. Propag. 56 (1) (Jan. 2008) 58-66.

[60]

L. Manica, P. Rocca, A. Massa, On the synthesis of sub-arrayed planar array antennas for tracking radar applications, IEEE Antenn. Wirel. Pr. 7 (May 2008) 599-602.

[61]

L. Manica, P. Rocca, A. Massa, Design of subarrayed linear and planar array antennas with SLL control based on an excitation matching approach, IEEE Trans. Antenn. Propag. 57 (6) (Jun. 2009) 1684-1691.

[62]

P. Rocca, M. D'Urso, L. Poli, Advanced strategy for large antenna array design with subarray-only amplitude and phase control, IEEE Antenn. Wirel. Pr. 13 (Jan. 2014) 91-94.

[63]

B. Fuchs, S. Rondineau, Array pattern synthesis with excitation control via norm minimization, IEEE Trans. Antenn. Propag. 64 (10) (Oct. 2016) 4228-4234.

[64]

N. Anselmi, G. Gottardi, G. Oliveri, A. Massa, A total-variation sparseness-promoting method for the synthesis of contiguously clustered linear arrays, IEEE Trans. Antenn. Propag. 67 (7) (Jul. 2019) 4589-4601.

[65]

X.-W. Zhao, Q.-S. Yang, Y.-H. Zhang, Synthesis of minimally subarrayed linear arrays via compressed sensing method, IEEE Antenn. Wirel. Pr. 18 (3) (Mar. 2019) 487-491.

[66]

W. Dong, Z.-H. Xu, X.-H. Liu, S.-B. Wang, S.-P. Xiao, Modular subarrayed phased-array design by means of iterative convex relaxation optimization, IEEE Antenn. Wirel. Pr. 18 (3) (Mar. 2019) 447-451.

[67]

W. Dong, Z.-H. Xu, X.-X. Li, S.-P. Xiao, Low-cost subarrayed sensor array design strategy for IoT and future 6G applications, IEEE Internet Things 7 (6) (Jun. 2020) 4816-4826.

[68]

F. Yang, Y.-K. Ma, W.-J. Long, et al., Synthesis of irregular phased arrays subject to constraint on directivity via convex optimization, IEEE Trans. Antenn. Propag. 69 (7) (Jul. 2021) 4235-4240.

[69]

J.-Y. Chen, Z.-H. Xu, S.-P. Xiao, Irregular subarray design strategy based on weighted L1 norm iterative convex optimization, IEEE Antenn. Wirel. Pr. 21 (2) (Feb. 2022) 376-380.

[70]

Y. Li, Y. Gong, S.-Q. Xiao, Synthesis of modular subarrayed phased-array with shaped-beams by means of sequential convex optimization, IEEE Antenn. Wirel. Pr. 21 (6) (Jun. 2022) 1168-1172.

[71]

S.-Q. Pu, W. Dong, Z.-H. Xu, G.-Q. Yang, Joint optimization of domino subarray tiling and generalized directivity based on iterative convex relaxation, IEEE Antenn. Wirel. Pr. 23 (2) (Feb. 2024) 483-487.

[72]

P. Rocca, G. Oliveri, R.J. Mailloux, A. Massa, Unconventional phased array architectures and design methodologies—a review, Proc. IEEE 104 (3) (Mar. 2016) 544-560.

[73]

Y.-H. Liu, F.-X. Liu, P.-Y. Qin, Y.-J. Guo, Recent development in nonuniformly spaced array synthesis methods, in: Proc. of IEEE Intl. Symposium on Phased Array System & Technology, Waltham, USA, (2019), pp. 1-5.

[74]

S. Holm, B. Elgetun, G. Dahl, Properties of the beampattern of weight- and layout-optimized sparse arrays, IEEE T. Ultrason. Ferr. 44 (5) (Sept. 1997) 983-991.

[75]

A. Trucco, V. Murino, Stochastic optimization of linear sparse arrays, IEEE J. Ocean. Eng. 24 (3) (Jul. 1999) 291-299.

[76]

E. Epcacan, T. Ciloglu, A hybrid nonlinear method for array thinning, IEEE Trans. Antenn. Propag. 66 (5) (May 2018) 2318-2325.

[77]

B. Steinberg, Comparison between the peak sidelobe of the random array and algorithmically designed aperiodic arrays, IEEE Trans. Antenn. Propag. 21 (3) (May 1973) 366-370.

[78]

Y. Lo, S. Lee, A study of space-tapered arrays, IEEE Trans. Antenn. Propag. 14 (1) (Jan. 1966) 22-30.

[79]

R.M. Leahy, B.D. Jeffs, On the design of maximally sparse beamforming arrays, IEEE Trans. Antenn. Propag. 39 (8) (Aug. 1991) 1178-1187.

[80]

B.P. Kumar, G.R. Branner, Design of unequally spaced arrays for performance improvement, IEEE Trans. Antenn. Propag. 47 (3) (Mar. 1999) 511-523.

[81]

Y. Hua, Estimating two-dimensional frequencies by matrix enhancement and matrix pencil, IEEE Trans. Signal Process. 40 (9) (Sept. 1992) 2267-2280.

[82]

R.J. Mailloux, S.G. Santarelli, T.M. Roberts, D. Luu, Irregular polyomino-shaped subarrays for space-based active arrays, Int. J. Antenn. Propag., (2009), pp. 1-9. (Mar. 2009) 956524.

[83]

W. Dong, Z.-H. Xu, X.-H. Liu, S.-B. Wang, S.-P. Xiao, Irregular subarray tiling via heuristic iterative convex relaxation programming, IEEE Trans. Antenn. Propag. 68 (4) (Apr. 2020) 2842-2852.

[84]

Y.-K. Ma, S.-W. Yang, Y.-K. Chen, S.-W. Qu, J. Hu, High-directivity optimization technique for irregular arrays combined with maximum entropy model, IEEE Trans. Antenn. Propag. 69 (7) (Jul. 2021) 3913-3923.

[85]

G. Oliveri, M. Salucci, A. Massa, Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver, IEEE Trans. Antenn. Propag. 64 (10) (Oct. 2016) 4277-4287.

[86]

H.-S. Lin, Y.-J. Cheng, A tiling method for sub-arrayed spherical conformal phased array antennas based on maximum 3-D space entropy model, IEEE Trans. Antenn. Propag. 72 (3) (Mar. 2024) 2513-2523.

AI Summary AI Mindmap
PDF (1453KB)

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/