Numerical design of an efficient Ho3+-doped InF3 fiber laser at ∼3.2 ​μm

Shi-Yuan Zhou , Hong-Yu Luo , Ya-Zhou Wang , Yong Liu

Journal of Electronic Science and Technology ›› 2024, Vol. 22 ›› Issue (3) : 100261

PDF (1372KB)
Journal of Electronic Science and Technology ›› 2024, Vol. 22 ›› Issue (3) : 100261 DOI: 10.1016/j.jnlest.2024.100261
research-article

Numerical design of an efficient Ho3+-doped InF3 fiber laser at ∼3.2 ​μm

Author information +
History +
PDF (1372KB)

Abstract

In this work, we theoretically unlock the potential of Ho3+-doped InF3 fiber for efficient ∼3.2 ​μm laser generation (from the 5F4,5S25F5 transition), by employing a novel dual-wavelength pumping scheme at 1150 ​nm and 980 ​nm, for the first time. Under clad-coupled 1150 ​nm pumping of 5 ​W, ∼3.2 ​μm power of 3.6 ​W has been predicted with the optical-to-optical efficiency of 14.4%. Further efficient power scaling, however, is blocked by the output saturation with 980 ​nm pumping. To alleviate this behavior, the cascaded 5I55I6 transition, targeting ∼3.9 ​μm, has been activated simultaneously, therefore accelerating the population circulation between the laser upper level 5F4,5S2 and long-lived 5I6 level under 980 ​nm pumping. As a result, enhanced ∼3.2 ​μm power of 4.68 ​W has been obtained with optical-to-optical efficiency of 15.6%. Meanwhile the ∼3.9 ​μm laser, yielding power of 2.76 ​W with optical-to-optical efficiency of 9.2%, is theoretically achievable as well with a moderate heat load, of which the performance is even better than the prior experimentally and theoretically reported Ho3+-doped InF3 fiber lasers emitting at ∼3.9 ​μm alone. This work demonstrates a versatile platform for laser generation at ∼3.2 ​μm and ∼3.9 ​μm, thus providing the new opportunities for many potential applications, e.g., polymer processing, infrared countermeasures, and free-space communications.

Keywords

Cascaded / Fiber laser / Holmium / Mid-infrared

Cite this article

Download citation ▾
Shi-Yuan Zhou, Hong-Yu Luo, Ya-Zhou Wang, Yong Liu. Numerical design of an efficient Ho3+-doped InF3 fiber laser at ∼3.2 ​μm. Journal of Electronic Science and Technology, 2024, 22(3): 100261 DOI:10.1016/j.jnlest.2024.100261

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This work was supported in parts by the National Natural Science Foundation of China under Grants No. 62005040 and No. U20A20210.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

C. Frayssinous, V. Fortin, J.P. Bérubé, A. Fraser, R. Vallée, Resonant polymer ablation using a compact 3.44 μm fiber laser, J. Mater. Process. Technol. 252 (Feb. 2018) 813-820.

[2]

M.R. Majewski, G. Bharathan, A. Fuerbach, S.D. Jackson, Long wavelength operation of a dysprosium fiber laser for polymer processing, Opt. Lett. 46 (3) (Feb. 2021) 600-603.

[3]

J.P. Bérubé, C. Frayssinous, J. Lapointe, S. Duval, V. Fortin, R. Vallée, Direct inscription of on-surface waveguides in polymers using a mid-IR fiber laser, Opt Express 27 (21) (Oct. 2019) 31013-31022.

[4]

L.P. Pleau, V. Fortin, F. Maes, R. Vallée, M. Bernier, Tunable all-fiber laser for remote sensing of methane near 3.4 μm, in: Proc. of Conf. on Lasers and Electro-Optics Europe & European Quantum Electronics Conf., Munich, Germany, (2019), p. 1

[5]

L.C. Michaud, T. Boilard, S. Magnan-Saucier, et al., Towards real-time active imaging of greenhouse gases using tunable mid-infrared all-fiber lasers, Appl. Opt. 62 (23) (Aug. 2023) G69-G76.

[6]

R.I. Woodward, M.R. Majewski, D.D. Hudson, S.D. Jackson, Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing, APL Photonics 4 (2) (Feb. 2019) 1-10. 020801.

[7]

Y.N. Yusef, D.V. Petrachkov, E.N. Korobov, et al., An ex vivo study of the impact of mid-infrared laser on ocular tissues, in: Proc. of 2022 Intl. Conf. Laser Optics (ICLO), Saint Petersburg, Russian Federation, (2022), p. 1

[8]

M. Wang-Evers, A.J. Blazon-Brown, L. Ha-Wissel, et al., Assessment of a 3050/3200 nm fiber laser system for ablative fractional laser treatments in dermatology, Laser Surg. Med. 54 (6) (Aug. 2022) 851-860.

[9]

W.-J. Yue, Y.-C. Zhang, L.-B. Shi, et al., Porcine skin ablation using mid-infrared picosecond pulse burst, Results in Optics 9 (Dec. 2022) 1-7. 100309.

[10]

Y.O. Aydin, V. Fortin, R. Vallée, M. Bernier, Towards power scaling of 2.8 μm fiber lasers, Opt. Lett. 43 (18) (Sept. 2018) 4542-4545.

[11]

V. Fortin, M. Bernier, S.T. Bah, R. Vallée, 30 W fluoride glass all-fiber laser at 2.94 μm, Opt. Lett. 40 (12) (Jun. 2015) 2882-2885.

[12]

J.-F. Li, D.D. Hudson, S.D. Jackson, Tuned cascade laser, IEEE Photon. Technol. Lett. 24 (14) (Jul. 2012) 1215-1217.

[13]

F. Jobin, P. Paradis, Y.O. Aydin, et al., Recent developments in lanthanide-doped mid-infrared fluoride fiber lasers [Invited], Opt Express 30 (6) (Mar. 2022) 8615-8640.

[14]

O. Henderson-Sapir, J. Munch, D.J. Ottaway, Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping, Opt. Lett. 39 (3) (Feb. 2014) 493-496.

[15]

O. Henderson-Sapir, S.D. Jackson, D.J. Ottaway, Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser, Opt. Lett. 41 (7) (Apr. 2016) 1676-1679.

[16]

M. Lemieux-Tanguay, V. Fortin, T. Boilard, et al., 15 W monolithic fiber laser at 3.55 μm, Opt. Lett. 47 (2) (Jan. 2022) 289-292.

[17]

M.R. Majewski, S.D. Jackson, Highly efficient mid-infrared dysprosium fiber laser, Opt. Lett. 41 (10) (May 2016) 2173-2176.

[18]

M.R. Majewski, S.D. Jackson, Tunable dysprosium laser, Opt. Lett. 41 (19) (Oct. 2016) 4496-4498.

[19]

V. Fortin, F. Jobin, M. Larose, M. Bernier, R. Vallée, 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm, Opt. Lett. 44 (3) (Feb. 2019) 491-494.

[20]

Y.-Z. Wang, H.-Y. Luo, H.-T. Gong, et al., Watt-level and tunable operations of 3 μm-class dysprosium ZrF4 fiber laser pumped at 1.69 μm, IEEE Photon. Technol. Lett. 34 (14) (Jul. 2022) 737-740.

[21]

C. Carbonnier, H. Többen, U.B. Unrau, Room temperature CW fibre laser at 3.22 μm, Electron. Lett. 34 (9) (Apr. 1998) 893-894.

[22]

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S.D. Jackson, D.J. Ottaway, Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers, IEEE J. Sel. Top. Quant. 23 (3) (May/Jun. 2017) 1-9. 0900509.

[23]

Y. Ososkov, J. Lee, T.T. Fernandez, A. Fuerbach, S.D. Jackson, High-efficiency fluoroindate glass fiber laser, Opt. Lett. 48 (10) (May 2023) 2664-2667.

[24]

M.C. Falconi, A.M. Loconsole, A. Annunziato, S. Cozic, S. Poulain, F. Prudenzano, Design of a broadband erbium-doped fluoroindate fiber laser emitting up to 3.91 μm, J. Lightwave Technol. 41 (18) (Sept. 2023) 6065-6072.

[25]

F. Maes, V. Fortin, S. Poulain, et al., Room-temperature fiber laser at 3.92 μm, Optica 5 (7) (Jun. 2018) 761-764.

[26]

M.R. Majewski, R.I. Woodward, J.Y. Carreé, S. Poulain, M. Poulain, S.D. Jackson, Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber, Opt. Lett. 43 (8) (Apr. 2018) 1926-1929.

[27]

J.-F. Li, D.D. Hudson, S.D. Jackson, High-power diode-pumped fiber laser operating at 3 μm, Opt. Lett. 36 (18) (Sept. 2011) 3642-3644.

[28]

F. Röser, C. Jauregui, J. Limpert, A. Tünnermann, 94 W 980 nm high brightness Yb-doped fiber laser, Opt Express 16 (22) (Oct. 2008) 17310-17318.

[29]

F. Zhou, J.-F. Li, H.-Y. Luo, F. Quellette, Y. Liu, Numerical analysis of 3.92 μm dual-wavelength pumped heavily-holmium-doped fluoroindate fiber lasers, J. Lightwave Technol. 39 (2) (Jan. 2021) 633-645.

[30]

H.-Y. Luo, J.-C. Shi, J.-S. Chen, et al., Towards high-power and -efficiency ∼2.8 μm lasing: Lightly-erbium-doped ZrF fiber laser pumped at ∼1.7 μm, J. Lightwave Technol. 42 (1) (Jan. 2024) 316-325.

[31]

D. Marcuse, Loss analysis of single-mode fiber splices, The Bell System Technical Journal 56 (5) (May/Jun. 1977) 703-718.

[32]

L. Gomes, V. Fortin, M. Bernier, et al., The basic spectroscopic parameters of Ho3+-doped fluoroindate glass for emission at 3.9 μm, Opt. Mater. 60 (Oct. 2016) 618-626.

[33]

L. Gomes, V. Fortin, M. Bernier, et al., Excited state absorption and energy transfer in Ho3+-doped indium fluoride glass, Opt. Mater. 66 (Apr. 2017) 519-526.

[34]

D. Piatkowski, K. Wisniewski, M. Rozanski, et al., Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation, J. Phys.-Condens. Mat. 20 (15) (Mar. 2008) 1-11. 155201.

[35]

D.E. McCumber, Einstein relations connecting broadband emission and absorption spectra, Phys. Rev. 136 (4A) (Nov. 1964) A954-A957.

[36]

E. Osiac, I. Sokólska, S. Kück, Upconversion-induced blue, green and red emission in Ho3+:BaY2F8, J. Alloys Compd. 323–324 (Jul. 2001) 283-287.

[37]

S.L. Oliveira, M.J.V. Bell, A. Flórez, L.A.O. Nunes, Spectroscopic investigation of 2.0 μm emission in Ho3+-doped fluoroindate glasses, J. Phys. D Appl. Phys. 39 (15) (Jul. 2006) 3230-3234.

[38]

L. Gomes, A.F.H. Librantz, F.H. Jagosich, W.A.L. Alves, I.M. Ranieri, S.L. Baldochi, Energy transfer rates and population inversion of 4I11/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal, J. Appl. Phys. 106 (10) (Nov. 2009) 1-9. 103508.

[39]

Z.-W. Cheng, Z. Zhang, R.-C. Wang, et al., Numerical modeling of dual-wavelength pumped heavily-Ho3+-doped fluoroindate fiber lasers with efficient output at 3.92 μm, J. Lightwave Technol. 41 (22) (Nov. 2023) 7021-7028.

[40]

J.-N. Cao, C. Wei, H.-R. Zhou, et al., Modeling and optimization of cascaded lasing in a holmium doped fluoride fiber laser with efficient output at 3.92 μm, Opt. Express 30 (18) (Aug. 2022) 31623-31633.

[41]

M. Pollnan, S.D. Jackson, Erbium 3 μm fiber lasers, IEEE J. Sel. Top. Quant. 7 (1) (Jan./Feb. 2001) 30-40.

[42]

F. Maes, C. Stihler, L.P. Pleau, et al., 3.42 μm lasing in heavily-erbium-doped fluoride fibers, Opt Express 27 (3) (Feb. 2019) 2170-2183.

[43]

F. Maes, V. Fortin, M. Bernier, R. Vallée, 5.6 W monolithic fiber laser at 3.55 μm, Opt. Lett. 42 (11) (Jun. 2017) 2054-2057.

[44]

F. Maes, V. Fortin, M. Bernier, R. Vallée, Quenching of 3.4 μm dual-wavelength pumped erbium doped fiber lasers, IEEE J. Quant. Electron. 53 (2) (Apr. 2017) 1-8. 1600208.

[45]

H.H.P.T. Bekman, J.C. Van Den Heuvel, F.J.M. Van Putten, R. Schleijpen, Development of a mid-infrared laser for study of infrared countermeasures techniques, in: Proc. of SPIE 5615, Technologies for Optical Countermeasures, London, UK, (2004), pp. 27-38.

[46]

H. Kaushal, G. Kaddoum, Optical communication in space: challenges and mitigation techniques, IEEE Commun. Surv. Tut. 19 (1) (Jan. 2017) 57-96.

AI Summary AI Mindmap
PDF (1372KB)

40

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/