[1] | F. Trenz, R. Weigel, D. Kissinger. Validation of a functional principle for a broadband millimeter-wave power detection structure in a recent BiCMOS technology. Proc. of IEEE Radio Frequency Integrated Circuits Symposium (Honolulu, USA, 2017), pp. 88-91. |
[2] | J.D. Preez, S. Sinha. Millimeter-Wave Power Amplifiers. Springer, Cham (2017). |
[3] | P. Fay, J.S. Moon, S. Rajan. III-N polarization-graded transistors for millimeter-wave applications—Understanding and future potential. Appl. Phys. Lett., 121 (14) (2022), pp. 1-6. 140502. |
[4] | J.J. Komiak. Microwave and millimeter wave power amplifiers: Technology, applications, benchmarks, future trends. Proc. of IEEE Intl. Symposium on Radio-Frequency Integration Technology (Taipei, China, 2016), pp. 1-4. |
[5] | T.W. Li, M.-Y. Huang, H. Wang. Millimeter-wave continuous-mode power amplifier for 5G MIMO applications. IEEE T. Microw. Theor. Tech., 67 (7) (2019), pp. 3088-3098. |
[6] | J.L.K. Vallejos, K.W.G. Orellana, H.O.C. Quispe. Integrated power detection architecture for mmWave 5G transmitter. Proc. of IEEE Colombian Caribbean Conf., Barranquilla, Colombia (2023), pp. 1-6. |
[7] | W.-Y. Xu, H.-D. Xu, F.-K. Liu, X.-J. Wang. Millimeter-wave detector for gyrotron power monitoring. AIP Conf. Proc., 2254 (1) (2020), pp. 1-4. 090002. |
[8] | Y.-H. Lian, M.-J. Ying, S.-Y. Wang, Y.-H. Wang. An efficient maximum subcarrier power detection scheme for OFDM-IM systems. Proc. of Intl. Wireless Communications and Mobile Computing (Marrakesh, Morocco, 2023), pp. 258-263. |
[9] | S.I. Ivanov, A.P. Lavrov. Optimal operation modes of low cost RF power diode detector on multi-tone signals. Proc. of Intl. Symposium on Consumer Technologies (St. Petersburg, Russia, 2018), pp. 51-53. |
[10] | H. Ye, H. Ning, W.-S. Yang, et al. Research on calorimeter for high-power microwave measurements. Rev. Sci. Instrum., 86 (12) (2015), pp. 1-13. 124706. |
[11] | H. Ren, L. Ran, X.-M. Liu, et al. Quasi-distributed temperature detection of press-pack IGBT power module using FBG sensing. IEEE J. Emerg. Sel. Top. Power Electron., 10 (5) (2022), pp. 4981-4992. |
[12] | D.-B. Wang, W.-J. Bai, C.-C. Zhang, Y.-Y. Guo, J. Chen. Development research of thermocouple-based microwave power sensors using AC/DC substitution method. Microsyst. Technol., 21 (1) (2015), pp. 21-28. |
[13] | W.-J. Sun, X.-H. Cui, Y. Li. Research the method of evaluation microwave power standard correction factor uncertainty based on the theory of electromagnetic field. Appl. Mech. Mater. (2013), pp. 333-335. 284-289. |
[14] | Y.-X. Tian, L.-W. Xu, Y.-N. Wu, et al. Impulse power detection for fusion power supply based on cascaded quasi-proportion resonance. Fusion Eng. Des., 189 (2023), pp. 1-7. 113431. |
[15] | J. Liu, K. Zhang, Z.-L. Sun, Q. Wu, W. He, H. Wang. Concealed object detection and recognition system based on millimeter wave FMCW radar. Appl. Sci., 11 (19) (2021), pp. 1-17. 8926. |
[16] | Q. Zhang, G.-F. Zhang, C.-C. Yu, Y. Gao, L. Zhu, H. Wang. Modeling and simulation of millimeter wave radiation detection for buried metal targets. Proc. of Intl. Conf. on Modeling, Simulation, Optimization and Numerical Techniques, Hong Kong, China(2019), pp. 17-20. |
[17] | Datasheet of CHE1260 [Online] (December2015). https://www.alldatasheet.com/datasheet-pdf/pdf/738681/UMS/CHE1260.html. |
[18] | Datasheet of 83036C [Online]. Available (December2015). https://www.alldatasheet.com/view.jsp?Searchword=83036&sField=1. |
[19] | V.V. Leonidov, I.B. Gulyaev, G.S. Kolchin. Frequency detector for radar system broadband transmitter modules. J. Commun. Technol. Electron., 65 (2) (2020), pp. 188-192. |
[20] | Z.-T.Zhang, G. Li, P.-G. Zou, Q. Li, Y.-B. Chen. Research and application of power detection technology on photovoltaic module array. E3S Web of Conf., 165(2020). 1-5, 01020. |