Pangolins (Pholidota, Manidae) are classified as an evolutionarily distinct and globally endangered mammal due to their unique morphology (nail-like scales and a myrmecophagous diet) and being the victim of heavy poaching and worldwide trafficking. As such, pangolins serve as a textbook example for studying the special phenotypic evolutionary adaptations and conservation genetics of an endangered species. Recent years have demonstrated significant advancements in the fields of molecular genetics and genomics, which have translated to a series of important research achievements and breakthroughs concerning the evolution and conservation genetics of pangolins. This review comprehensively presents the hitherto advances in phylogeny, adaptive evolution, conservation genetics, and conservation genomics that are related to pangolins, which will provide an ample understanding of their diversity, molecular adaptation mechanisms, and evolutionary potentials. In addition, we highlight the priority of investigating species/population diversity among pangolins and suggest several avenues of research that are highly relevant for future pangolin conservation.
Enterobacterales and Pseudomonas aeruginosa have been colonizing or infecting wild hosts and antimicrobial-resistant strains are present in mammals and birds. Furthermore, international high-risk clones of multidrug-resistant Escherichia coli are identified and the implications of multidrug-resistant Gram-negative bacteria in zoo animals are discussed.
Morphometric studies of 3D micro CT-scanned images can provide insights into the evolution of the brain and sensory structures but such data are still scarce for the most diverse mammalian order of rodents. From reviewed and new data, we tested for convergence to extreme aridity and high elevation in the sensory and brain morphology of rodents, from morphometric data from micro-CT X-ray scans of 174 crania of 16 species of three distantly related African murid (soft-furred mice, Praomyini, laminate-toothed rats, Otomyini, and gerbils, Gerbillinae) clades and one North American cricetid (deer mice and white-footed mice, Peromyscus) clade. Recent studies demonstrated convergent evolution acting on the oval window area of the cochlea (enlarged in extremely arid-adapted species of Otomyini and Gerbillinae) and on endocranial volume (reduced in high elevation taxa of Otomyini and Peromyscus). However, contrary to our predictions, we did not find evidence of convergence in brain structure to aridity, or in the olfactory/respiratory system (turbinate bones) to high elevation. Brain structure differed, particularly in the petrosal lobules of the cerebellum and the olfactory bulbs, between Otomyini and Gerbillinae, with extreme arid-adapted species in each clade being highly divergent (not convergent) from other species in the same clade. We observed greater “packing” of the maxillary turbinate bones, which have important respiratory functions, in Peromyscus mice from high and low elevations compared to the high-elevation African Praomyini, but more complex patterns within Peromyscus, probably related to trade-offs in respiratory physiology and heat exchange in the nasal epithelium associated with high-elevation adaptation.
Rodents are important reservoirs for zoonotic pathogens that cause diseases in humans. Biodiversity is hypothesized to be closely related to pathogen prevalence through multiple direct and indirect pathways. For example, the presence of non-host species can reduce contact rates of the main reservoir host and thus reduce the risk of transmission (“dilution effect”). In addition, an overlap in ecological niches between two species could lead to increased interspecific competition, potentially limiting host densities and reducing density-dependent pathogen transmission processes. In this study, we investigated the relative impact of population-level regulation of direct and indirect drivers of the prevalence of Puumala orthohantavirus (PUUV) in bank voles (Clethrionomys glareolus) during years with high abundance. We compiled data on small mammal community composition from four regions in Germany between 2010 and 2013. Structural equation modeling revealed a strong seasonality in PUUV control mechanisms in bank voles. The abundance of shrews tended to have a negative relationship with host abundance, and host abundance positively influenced PUUV seroprevalence, while at the same time increasing the abundance of competing non-hosts like the wood mouse (Apodemus sylvaticus) and the yellow-necked field mouse (Apodemus flavicollis) were associated with reduced PUUV seroprevalence in the host. These results indicate that for PUUV in bank voles, dilution is associated with increased interspecific competition. Anthropogenic pressures leading to the decline of Apodemus spp. in a specific habitat could lead to the amplification of mechanisms promoting PUUV transmission within the host populations.
The plateau environments are typically arid, cool, and high altitude, posing formidable challenges to wildlife survival due to resource scarcity and harsh conditions. Unraveling ecological adaptability in severe conditions requires a deeper understanding of the niche characteristics of plateau species. Trophic niche, which is a comprehensive indicator describing the energy acquisition strategy of animals, remains relatively understudied in plateau species. Here, by combining stable isotopes and morphological data, we quantified the trophic niches of two allopatric lizard species (Phrynocephalus vlangalii and P. erythrurus) that live in the hinterland of the Qinghai–Tibetan Plateau, and explored how their trophic niches correlate with morphological and environmental factors. While both trophic niche and morphological traits were similar between species, noteworthy distinctions were observed between male and female Phrynocephalus lizards. The morphological traits associated with predation (i.e. limb length and head size) and reproduction (i.e. abdomen length), annual mean temperature, and sex played influential roles in shifting trophic niches. These results imply that sexual dimorphism may facilitate inter-sex divergence in resource utilization, leading to trophic niche variations in the highland lizards. Furthermore, extreme environmental stress can constrain interspecific divergence in morphological and trophic traits. Our findings illustrate the dynamic variations of trophic niches in highland lizards, contributing to a more comprehensive understanding of the adaptation strategies employed by lizard species in plateau environments.
There is currently limited information regarding the levels of infection and distribution of sarcoptic mange in the wombat population throughout Australia. We analyzed cases of sarcoptic mange in bare-nosed wombats reported into WomSAT, a website and mobile phone application where citizen scientists can upload sightings of wombats, burrows, and sarcoptic mange status. We used Maxent software to predict locations and the environmental factors associated with sarcoptic mange occurrence in bare-nosed wombats. A total of 1379 sarcoptic mange-infected and 3043 non-sarcoptic mange-infected wombats were reported by 674 and 841 citizen scientists, respectively. Of all the wombats reported to WomSAT from 2015 to 2019, 31.2% were infected with sarcoptic mange. Sarcoptic mange in bare-nosed wombats was reported in 502 suburbs across four states. New South Wales had the highest number of sarcoptic mange cases reported to WomSAT. There was no statistically significant seasonal variation of sarcoptic mange levels in bare-nosed wombats. The model showed that Euclidean distance to urban areas was the highest contributing factor for sarcoptic mange occurrence. As distance to urban areas decreased, the suitability for sarcoptic mange increased. Annual precipitation was the next contributing factor in the model, with higher rainfall of 400–700 mm correlating to an increase in sarcoptic mange occurrence. As the data collected to date have provided the largest-scale contemporary distribution of sarcoptic mange in wombats, data should continue to be collected by citizen scientists as it is an easy and low-cost method of collecting data over large areas. We suggest targeting the identified hotspot areas and more site-specific studies for studying and mitigating sarcoptic mange in bare-nosed wombats.
Many species exhibit color polymorphisms which have distinct physiological and behavioral characteristics. However, the consistency of morph trait covariation patterns across species, time, and ecological contexts remains unclear. This trait covariation is especially relevant in the context of invasion biology and urban adaptation. Specifically, physiological traits pertaining to energy maintenance are crucial to fitness, given their immediate ties to individual reproduction, growth, and population establishment. We investigated the physiological traits of Podarcis muralis, a versatile color polymorphic species that thrives in urban environments (including invasive populations in Ohio, USA). We measured five physiological traits (plasma corticosterone and triglycerides, hematocrit, body condition, and field body temperature), which compose an integrated multivariate phenotype. We then tested variation among co-occurring color morphs in the context of establishment in an urban environment. We found that the traits describing physiological status and strategy shifted across the active season in a morph-dependent manner—the white and yellow morphs exhibited clearly different multivariate physiological phenotypes, characterized primarily by differences in plasma corticosterone. This suggests that morphs have different strategies in physiological regulation, the flexibility of which is crucial to urban adaptation. The white-yellow morph exhibited an intermediate phenotype, suggesting an intermediary energy maintenance strategy. Orange morphs also exhibited distinct phenotypes, but the low prevalence of this morph in our study populations precludes clear interpretation. Our work provides insight into how differences among stable polymorphisms exist across axes of the phenotype and how this variation may aid in establishment within novel environments.
Pest rodents pose a serious threat to island biodiversity. Fertility control could be an alternative approach to control the impact of rodents on these islands. In this study, we examined the antifertility effects of EP-1 baits containing quinestrol (E) and levonorgestrel (P) using a dose of 50 ppm E and P at three different ratios (E:P ratio = 1:2, 1:1, and 2:1) on Pacific rats (Rattus exulans) in the Xisha Islands, Hainan, China. Compared to the control group, all animals in EP-1 treatment groups showed significantly decreased food intake and body weight. In treated males, there were obvious abnormalities in testis structure and a significant decrease of relative seminal vesicle weight, but no significant effect on relative uterine and ovarian weights (g kg−1 body weight), or ovarian structure in females. Adding 8% sucrose to the original 50-ppm baits (E:P ratio = 1:1) significantly increased bait palatability for males and females. This dose induced uterine edema and abnormalities of ovarian structure in females but had no significant negative effect on the relative testis, epididymis, and seminal vesicle weights (g kg−1 body weight) or sperm density in males. In summary, 50-ppm EP-1 (1:1) baits have the potential to disrupt the fertility of females, and 8% sucrose addition to the EP-1 baits (E:P ratio = 1:1) could improve bait palatability. This dose disrupted the testis structure in males. Future studies are needed to improve bait acceptance and assess the antifertility effects of EP-1 (1:1) on Pacific rats in captive breeding trials and under field conditions.
The dynamics of populations of small mammals of Central Siberia was analyzed. The studies were carried out at the Yenisei ecological station “Mirnoye” of the A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences. The time series analysis was performed by the wavelet transform using the statistical data processing language R. In the 20th century, the dynamics of the population of the community and some of its constituent species (Sorex araneus; S. caecutiens; S. isodon; S. tundrensis; S. minutus; Craseomys rufocanus; Clethrionomys rutilus; Microtus oeconomus; M. agrestis) were characterized by a 4-year periodicity. The type of dynamics changed to noncyclic by the nineties, but by 2022, four species (S. araneus, S. isodon, C. rutilus, and M. oeconomus) and the community as a whole showed a tendency toward recovery of population cycles. The remaining species were characterized by consistently low numbers with irregular low amplitude fluctuations.