Characterization of the olive fly (Bactrocera oleae) microbiome across diverse geographic regions of Morocco

Youssef El Yamlahi , Imane Remmal , Amal Maurady , Mohammed R. Britel , Abdelmonaim Homrani Bakali , Naima Bel Mokhtar , Ioannis Galiatsatos , Panagiota Stathopoulou , George Tsiamis

Insect Science ›› 2025, Vol. 32 ›› Issue (5) : 1669 -1680.

PDF
Insect Science ›› 2025, Vol. 32 ›› Issue (5) : 1669 -1680. DOI: 10.1111/1744-7917.70126
SPECIAL ISSUE ARTICLE

Characterization of the olive fly (Bactrocera oleae) microbiome across diverse geographic regions of Morocco

Author information +
History +
PDF

Abstract

The olive fruit fly (Bactrocera oleae) is a significant pest threatening olive production worldwide. Bactrocera oleae relies on symbiotic bacteria for nutrition, development, and adaptation to its environment. Among these, Candidatus Erwinia dacicola is the most dominant symbiont and plays a key role in the fly's physiology and ecological adaptation. Understanding the dynamics between B. oleae, Ca. E. dacicola, and other components of the B. oleae microbiome is essential for developing effective targeted area-wide pest management strategies. This study aims to leverage full 16S rRNA gene sequencing to enhance the characterization of microbiome diversity in wild B. oleae populations from different regions in Morocco: Ouezzane, Rabat, Tanger, Errachidia, and Beni-Mellal. The results revealed distinct microbiome compositions influenced by geographic locations, with Candidatus Erwinia dacicola as the dominant symbiont, followed by Erwinia persicina as a secondary contributor. Other bacterial taxa, including Asaia bogorensis, were also identified, highlighting the functional diversity within the olive fly microbiome. These findings provide insights into the microbial ecology of B. oleae, contributing to the development and enhancement of sustainable pest control strategies.

Cite this article

Download citation ▾
Youssef El Yamlahi, Imane Remmal, Amal Maurady, Mohammed R. Britel, Abdelmonaim Homrani Bakali, Naima Bel Mokhtar, Ioannis Galiatsatos, Panagiota Stathopoulou, George Tsiamis. Characterization of the olive fly (Bactrocera oleae) microbiome across diverse geographic regions of Morocco. Insect Science, 2025, 32(5): 1669-1680 DOI:10.1111/1744-7917.70126

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad, S. Haq, I.U. Cáceres, C. Sto Tomas, U. Dammalage, T. Gembinsky, K. et al. (2018) One for all: Mating compatibility among various populations of olive fruit fly (Diptera: Tephritidae) for application of the sterile insect technique. PLoS ONE, 13, e0206739.

[2]

Augustinos, A.A. Santos-Garcia, D. Dionyssopoulou, E. Moreira, M. Papapanagiotou, A. Scarvelakis, M. et al. (2011) Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PLoS ONE, 6, e28695.

[3]

Bel Mokhtar, N. Asimakis, E. Galiatsatos, I. Maurady, A. Stathopoulou, P. and Tsiamis, G. (2024) Development of MetaXplore: an interactive tool for targeted metagenomic analysis. Current Issues in Molecular Biology, 46, 4803-4814.

[4]

Ben-Yosef, M. Aharon, Y. Jurkevitch, E. and Yuval, B. (2010) Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proceedings of the Royal Society B: Biological Sciences, 277, 1545-1552.

[5]

Ben-Yosef, M. Pasternak, Z. Jurkevitch, E. and Yuval, B. (2014) Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. Journal of Evolutionary Biology, 27, 2695-2705.

[6]

Ben-Yosef, M. Pasternak, Z. Jurkevitch, E. and Yuval, B. (2015) Symbiotic bacteria enable olive fly larvae to overcome host defences. Royal Society Open Science, 2, 150170.

[7]

Bigiotti, G. Pastorelli, R. Belcari, A. and Sacchetti, P. (2019a) Symbiosis interruption in the olive fly: effect of copper and propolis on Candidatus Erwinia dacicola. Journal of Applied Entomology, 143, 357-364.

[8]

Bigiotti, G. Pastorelli, R. Guidi, R. Belcari, A. and Sacchetti, P. (2019b) Horizontal transfer and finalization of a reliable detection method for the olive fruit fly endosymbiont, Candidatus Erwinia dacicola. BMC Biotechnology, 19, 93.

[9]

Campos, C. Gomes, L. Rei, F.T. and Nobre, T. (2022) Olive fruit fly symbiont population: impact of metamorphosis. Frontiers in Microbiology, 13, 868458.

[10]

Capuzzo, C. Firrao, G. Mazzon, L. Squartini, A. and Girolami, V. (2005) ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). International Journal of Systematic and Evolutionary Microbiology, 55, 1641-1647.

[11]

Crisosto, C.H. Ferguson, L. and Nanos, G. (2011) Olive (Olea europaea L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits (ed. E. M. Yahia), pp. 63-85, 86e-87e. Elsevier, the Netherlands.

[12]

Crotti, E. Balloi, A. Hamdi, C. Sansonno, L. Marzorati, M. Gonella, E. et al. (2012) Microbial symbionts: a resource for the management of insect-related problems. Microbial Biotechnology, 5, 307-317.

[13]

Crotti, E. Damiani, C. Pajoro, M. Gonella, E. Rizzi, A. Ricci, I. et al. (2009) Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environmental Microbiology, 11, 3252-3264.

[14]

Daane, K.M. and Johnson, M.W. (2010) Olive fruit fly: managing an ancient pest in modern times. Annual Review of Entomology, 55, 151-169.

[15]

De Coster, W. D'Hert, S. Schultz, D.T. Cruts, M. and Van Broeckhoven, C. (2018) NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34, 2666-2669.

[16]

Douglas, A.E. (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annual Review of Entomology, 60, 17-34.

[17]

Economopoulos, A.P. (1972) Sexual competitiveness of γ-ray sterilized males of Dacus oleae. Mating frequency of artificially reared and wild females. Environmental Entomology, 1, 490-497.

[18]

Economopoulos, A.P. (1977) Gamma-ray sterilization of Dacus oleae (Gmelin) Effect of nitrogen on the competitiveness of irradiated males. Zeitschrift für Angewandte Entomologie, 83, 86-95.

[19]

Engel, P. and Moran, N.A. (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, 37, 699-735.

[20]

Estes, A.M. Hearn, D.J. Bronstein, J.L. and Pierson, E.A. (2009) The olive fly endosymbiont, ‘Candidatus Erwinia dacicola’, switches from an intracellular existence to an extracellular existence during host insect development. Applied and Environmental Microbiology, 75, 7097-7106.

[21]

Estes, A.M. Nestel, D. Belcari, A. Jessup, A. Rempoulakis, P. and Economopoulos, A.P. (2011) A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). Journal of Applied Entomology, 136, 1-16.

[22]

Genç, H. (2014) Embryonic development of the olive fruit fly, Bactrocera oleae Rossi (Diptera: Tephritidae), in vivo. Turkish Journal of Zoology, 38, 598-602.

[23]

Ghanbari, R. Anwar, F. Alkharfy, K.M. Gilani, A.-H. and Saari, N. (2012) Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.) — A review. International Journal of Molecular Sciences, 13, 3291-3340.

[24]

Hartley, J.L. and Bowen, H. (2003) PEG precipitation for selective removal of small DNA fragments. Focus (San Francisco, Calif.), 25, 18.

[25]

Jose, P.A. Ben-Yosef, M. Jurkevitch, E. and Yuval, B. (2019) Symbiotic bacteria affect oviposition behavior in the olive fruit fly Bactrocera oleae. Journal of Insect Physiology, 117, 103917.

[26]

Kakani, E.G. Zygouridis, N.E. Tsoumani, K.T. Seraphides, N. Zalom, F.G. and Mathiopoulos, K.D. (2010) Spinosad resistance development in wild olive fruit fly Bactrocera oleae (Diptera: Tephritidae) populations in California. Pest Management Science, 66, 447-453.

[27]

Kampouraki, A. Stavrakaki, M. Karataraki, A. Katsikogiannis, G. Pitika, E. Varikou, K. et al. (2018) Recent evolution and operational impact of insecticide resistance in olive fruit fly Bactrocera oleae populations from Greece. Journal of Pest Science, 91, 1429-1439.

[28]

Knipling, E.F. (1955) Possibilities of insect control or eradication through the use of sexually sterile males. Journal of Economic Entomology, 48, 459-462.

[29]

Koskinioti, P. Ras, E. Augustinos, A.A. Tsiamis, G. Beukeboom, L.W. Cáceres, C. et al. (2019) The effects of geographic origin and antibiotic treatment on the gut symbiotic communities of Bactrocera oleae populations. Entomologia Experimentalis et Applicata, 167, 197-208.

[30]

Kounatidis, I. Crotti, E. Sapountzis, P. Sacchi, L. Rizzi, A. Chouaia, B. et al. (2009) Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Applied and Environmental Microbiology, 75, 3281-3288.

[31]

Kuske, C.R. Barns, S.M. Grow, C.C. Merrill, L. and Dunbar, J. (2006) Environmental survey for four pathogenic bacteria and closely related species using phylogenetic and functional genes. Journal of Forensic Sciences, 51, 548-558.

[32]

Malandrakis, A.A. Varikou, K. Kavroulakis, Ν. Nikolakakis, A. Dervisi, I. Reppa, C.Ι. et al. (2024) Copper nanoparticles interfere with insecticide sensitivity, fecundity and endosymbiont abundance in olive fruit fly Bactrocera oleae (Diptera: Tephritidae). Pest Management Science, 80, 3640-3649.

[33]

Martinez-Sañudo, I. Perotti, M.A. Carofano, I. Santoiemma, G. Marri, L. and Mazzon, L. (2024) The biogeographic patterns of the olive fly and its primary symbiont Candidatus Erwinia dacicola across the distribution area of the olive tree. Scientific Reports, 14, 22483.

[34]

Mazzon, L. Piscedda, A. Simonato, M. Martinez-Sanudo, I. Squartini, A. and Girolami, V. (2008) Presence of specific symbiotic bacteria in flies of the subfamily Tephritinae (Diptera Tephritidae) and their phylogenetic relationships: proposal of ‘Candidatus Stammerula tephritidis.’ International Journal of Systematic and Evolutionary Microbiology, 58, 1277-1287.

[35]

Mondal, S. Somani, J. Roy, S. Babu, A. and Pandey, A.K. (2023) Insect microbial symbionts: ecology, interactions, and biological significance. Microorganisms, 11, 2665.

[36]

Noman, M.S. Liu, L. Bai, Z. and Li, Z. (2020) Tephritidae bacterial symbionts: potentials for pest management. Bulletin of Entomological Research, 110, 1-14.

[37]

Pavlidi, N. Gioti, A. Wybouw, N. Dermauw, W. Ben-Yosef, M. Yuval, B. et al. (2017) Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Scientific Reports, 7, 42633.

[38]

Pavlidi, N. Kampouraki, A. Tseliou, V. Wybouw, N. Dermauw, W. Roditakis, E. et al. (2018) Molecular characterization of pyrethroid resistance in the olive fruit fly Bactrocera oleae. Pesticide Biochemistry and Physiology, 148, 1-7.

[39]

Quast, C. Pruesse, E. Yilmaz, P. Gerken, J. Schweer, T. Yarza, P. et al. (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596.

[40]

Ras, E. Beukeboom, L.W. Cáceres, C. and Bourtzis, K. (2017) Review of the role of gut microbiota in mass rearing of the olive fruit fly, Bactrocera oleae, and its parasitoids. Entomologia Experimentalis et Applicata, 164, 237-256.

[41]

Rodríguez-Pérez, H. Ciuffreda, L. and Flores, C. (2021) NanoCLUST: a species-level analysis of 16S rRNA nanopore sequencing data. Bioinformatics, 37, 1600-1601.

[42]

Sacchetti, P. Granchietti, A. Landini, S. Viti, C. Giovannetti, L. and Belcari, A. (2008) Relationships between the olive fly and bacteria. Journal of Applied Entomology, 132, 682-689.

[43]

Sikaoui, L. Bouizgaren, A. El Antari, A. El Bakkali, A. Ouguas, Y. Zaher, H. et al. (2024) Current state of INRA research on olive trees in Morocco. African and Mediterranean Agricultural Journal—Al Awamia, 144, 1-20.

[44]

Sohel, A. Viwat, W. Rempoulakis, P. Fontenot, E.A. Ul Haq, I. Caceres, C. et al. (2014) Hybridization and use of grapes as an oviposition substrate improves the adaptation of olive fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) to artificial rearing conditions. International Journal of Industrial Entomology, 29, 198-206.

[45]

Vreysen, M.J.B. Robinson, A.S. Hendrichs, J. and Kenmore, P. (2007) Area-Wide Integrated Pest Management (AW-IPM): principles, practice and prospects. In Area-Wide Control of Insect Pests (eds. M.J.B. Vreysen, A.S. Robinson & J. Hendrichs), pp. 3-33. Dordrecht: Springer, the Netherlands.

[46]

Wick, R.R. Judd, L.M. Gorrie, C.L. and Holt, K.E. (2017) Completing bacterial genome assemblies with multiplex MinION sequencing. Microbial Genomics, 3, e000132.

[47]

Zhang, Z. and Nan, Z. (2014) Erwinia persicina, a possible new necrosis and wilt threat to forage or grain legumes production. European Journal of Plant Pathology, 139, 349-358.

RIGHTS & PERMISSIONS

2025 The Author(s). Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

24

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/