Effect of Spiroplasma infection on the mating behavior of Glossina fuscipes fuscipes

Giulia Fiorenza , Riccardo Piccinno , Daniel J. Bruzzese , Francesca Scolari , Gloria Milanesi , Claudio Casali , Ludvik M. Gomulski , Francesco Lescai , Federico Forneris , Giuliano Gasperi , Kiswend-sida M. Dera , Chantel de Beer , Adly M.M. Abd-Alla , Serap Aksoy , Anna R. Malacrida

Insect Science ›› 2025, Vol. 32 ›› Issue (5) : 1726 -1736.

PDF
Insect Science ›› 2025, Vol. 32 ›› Issue (5) : 1726 -1736. DOI: 10.1111/1744-7917.70042
SPECIAL ISSUE ARTICLE

Effect of Spiroplasma infection on the mating behavior of Glossina fuscipes fuscipes

Author information +
History +
PDF

Abstract

Tsetse flies are insects of significant public health and zoonotic importance as they are the main vectors of African trypanosomes. To date, an effective vaccine is unavailable and efforts to limit the spread of the disease primarily rely on controlling the tsetse populations. The discovery of Spiroplasma (class Mollicutes) in Glossina fuscipes fuscipes (Gff) (palpalis subgroup), offers promising insights into its potential use as a biological control agent to hinder trypanosomes infection in tsetse flies. Indeed, a negative correlation between Spiroplasma and trypanosome co-infection has been observed. Using a laboratory strain of Gff, we provide fundamental biological insights into the effects of Spiroplasma infection on the mating behavior of the fly. We found a sex-biased Spiroplasma infection, with males exhibiting a higher infection rate. Mass mating experiments revealed a higher mating propensity in Spiroplasma-infected flies. Additionally, the presence of Spiroplasma influenced premating isolation, leading to nonrandom mating patterns that favored the pairing of individuals with matching infection statuses. Moreover, we present evidence of Spiroplasma vertical paternal transmission. By analyzing female reproductive tissues at 2 and 24 h postmating, we confirmed that an infected male can transfer Spiroplasma to the female via the spermatophore, which can subsequently migrate to the spermathecae. This study provides foundational insights into the role of Spiroplasma in tsetse fly mating behavior and provides supporting evidence for vertical transmission from infected males.

Keywords

bacterium transfer / horizontal transmission / nonrandom mating / reproductive behavior / tsetse fly / vertical transmission

Cite this article

Download citation ▾
Giulia Fiorenza, Riccardo Piccinno, Daniel J. Bruzzese, Francesca Scolari, Gloria Milanesi, Claudio Casali, Ludvik M. Gomulski, Francesco Lescai, Federico Forneris, Giuliano Gasperi, Kiswend-sida M. Dera, Chantel de Beer, Adly M.M. Abd-Alla, Serap Aksoy, Anna R. Malacrida. Effect of Spiroplasma infection on the mating behavior of Glossina fuscipes fuscipes. Insect Science, 2025, 32(5): 1726-1736 DOI:10.1111/1744-7917.70042

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abila, P.P. Kiendrebeogo, M. Mutika, G.N. Parker, A.G. and Robinson, A.S. (2003) The effect of age on the mating competitiveness of male Glossina fuscipes fuscipes and G. palpalis palpalis. Journal of Insect Science, 3, 13.

[2]

Anbutsu, H. and Fukatsu, T. (2003) Population dynamics of male-killing and non-male-killing Spiroplasmas in Drosophila melanogaster. Applied Environmental Microbiology, 69, 1428-1434.

[3]

Arai, H. Inoue, M.N. and Kageyama, D. (2022) Male-killing mechanisms vary between Spiroplasma species. Frontiers in Microbiology, 13, 1075199.

[4]

Attardo, G.M. Tam, N. Parkinson, D. Mack, L.K. Zahnle, X.J. Arguellez, J. et al. (2020) Interpreting morphological adaptations associated with viviparity in the tsetse fly Glossina morsitans (Westwood) by three-dimensional analysis. Insects, 11, 651.

[5]

Ballinger, M.J. and Perlman, S.J. (2019) The defensive Spiroplasma. Current Opinion in Insect Science, 32, 36-41.

[6]

Baruffi, L. Damiani, G. Guglielmino, C.R. Bandi, C. Malacrida, A.R. and Gasperi, G. (1995) Polymorphism within and between populations of Ceratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data. Heredity, 74, 425-437.

[7]

Bauer, B. and Wetzel, H. (1976) A new membrane for feeding Glossina morsitans Westw. (Diptera, Glossinidae). Bulletin of Entomological Research, 65, 563-565.

[8]

Benoit, J.B. Attardo, G.M. Baumann, A.A. Michalkova, V. and Aksoy, S. (2015) Adenotrophic viviparity in tsetse flies: potential for population control and as an insect model for lactation. Annual Review of Entomology, 60, 351-371.

[9]

Blow, F. and Douglas, A.E. (2019) The hemolymph microbiome of insects. Journal of Insect Physiology, 115, 33-39.

[10]

Bolaños, L.M. Servín-Garcidueñas, L.E. and Martínez-Romero, E. (2015) Arthropod-Spiroplasma relationship in the genomic era. FEMS Microbial Ecology, 91, 1-8.

[11]

Bruzzese, D.J. Schuler, H. Wolfe, T.M. Glover, M.M. Mastroni, J.V. Doellman, M.M. et al. (2022) Testing the potential contribution of Wolbachia to speciation when cytoplasmic incompatibility becomes associated with host-related reproductive isolation. Molecular Ecology, 31, 2935-2950.

[12]

Büscher, P. Cecchi, G. Jamonneau, V. and Priotto, G. (2017) Human African trypanosomiasis. The Lancet, 390, 2397-2409.

[13]

Butlin, R.K. and Smadja, C.M. (2018) Coupling, reinforcement, and speciation. The American Naturalist, 191, 155-172.

[14]

Chepkemoi, S.T. Mararo, E. Butungi, H. Paredes, J. Masiga, D.K. Sinkins, S.P. et al. (2017) Identification of Spiroplasma insolitum symbionts in Anopheles gambiae. Wellcome Open Resources, 2, 90.

[15]

Dera, K.S.M. Dieng, M.M. Moyaba, P. Ouedraogo, G.M. Pagabeleguem, S. Njokou, F. et al. (2023) Prevalence of Spiroplasma and interaction with wild Glossina tachinoides microbiota. Parasite, 30, 62.

[16]

Doudoumis, V. Blow, F. Saridaki, A. Augustinos, A. Dyer, N.A. Goodhead, I. et al. (2017) Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations. Scientific Reports, 7, 4699.

[17]

Goto, S. Anbutsu, H. and Fukatsu, T. (2006) Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Applied and Environmental Microbiology, 72, 4805-4810.

[18]

Haselkorn, T.S. (2010) The Spiroplasma heritable bacterial endosymbiont of Drosophila. Fly (Austin), 4, 80-87.

[19]

Haselkorn, T.S. Watts, T.D. and Markow, T.A. (2013) Density dynamics of diverse Spiroplasma strains naturally infecting different species of Drosophila. Fly (Austin), 7, 204-210.

[20]

Herren, J.K. Paredes, J.C. Schüpfer, F. and Lemaitre, B. (2013) Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery. mBio, 4, e00532-e00512.

[21]

Horn, D. (2014) Antigenic variation in African trypanosomes. Molecular and Biochemical Parasitology, 195, 123-129.

[22]

Hrdina, A. Serra Canales, M. Arias-Rojas, A. Frahm, D. and Iatsenko, I. (2024) The endosymbiont Spiroplasma poulsonii increases Drosophila melanogaster resistance to pathogens by enhancing iron sequestration and melanization. mBio, 15, e00936-e00924.

[23]

Jaenike, J. Dyer, K.A. Cornish, C. and Minhas, M.S. (2006) Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biology, 4, e325.

[24]

Kalyaanamoorthy, S. Minh, B.Q. Wong, T.K.F. Von Haeseler, A. and Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587-589.

[25]

Katoh, K. and Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.

[26]

Krafsur, E. (2009) Tsetse flies: Genetics, evolution, and role as vectors. Infection Genetics and Evolution, 9, 124-141.

[27]

Lindner, A.K. Lejon, V. Barrett, M.P. Blumberg, L. Bukachi, S.A. Chancey, R.J. et al. (2024) New WHO guidelines for treating rhodesiense human African trypanosomiasis: expanded indications for fexinidazole and pentamidine. Lancet Infectious Diseases, 25, e77-e85. https://doi.org/10.1016/S1473-3099(24)00581-4.

[28]

Masson, F. Pierrat, X. Lemaitre, B. and Persat, A. (2021) The wall-less bacterium Spiroplasma poulsonii builds a polymeric cytoskeleton composed of interacting MreB isoforms. iScience, 24, 103458.

[29]

Mellanby, H. (1937) Experimental work on reproduction in the tsetse fly, Glossina palpalis. Parasitology, 29, 131-141.

[30]

Minh, B.Q. Schmidt, H.A. Chernomor, O. Schrempf, D. Woodhams, M.D. Von Haeseler, A. et al. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530-1534.

[31]

Nunan, L.M. Lightner, D.V. Oduori, M.A. and Gasparich, G.E. (2005) Spiroplasma penaei sp. nov., associated with mortalities in Penaeus vannamei, Pacific white shrimp. International Journal of Systematic and Evolutionary Microbiology, 55, 2317-2322.

[32]

Ozioko, K. Okoye, C. Obiezue, R. Idika, I. Awudu, R. Ezewudo, B. et al. (2020) Accelerating towards human African trypanosomiasis elimination: issues and opportunities. Journal of Vector Borne Diseases, 57, 105.

[33]

R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

[34]

Ronchetti, F. Schmitt, T. Negri, A. Gabrieli, P. Epis, S. Bandi, C. et al. (2023) Evidence of cuticular hydrocarbon profile alterations by Wolbachia in females, but not males, of an aculeate parasitoid wasp. Entomologia Generalis, 43, 369.

[35]

Rotureau, B. and Van Den Abbeele, J. (2013) Through the dark continent: African trypanosome development in the tsetse fly. Frontiers in Cellular and Infection Microbiology, 3, 53.

[36]

Saarman, N.P. Son, J.H. Zhao, H. Cosme, L.V. Kong, Y. Li, M. et al. (2023) Genomic evidence of sex chromosome aneuploidy and infection-associated genotypes in the tsetse fly Glossina fuscipes, the major vector of African trypanosomiasis in Uganda. Infection Genetics and Evolution, 114, 105501.

[37]

Sagouti, T. Rhallabi, N. Polizzi, G. Tahiri, A. Belabess, Z. Barka, E.A. et al. (2023) Comparison of serological and molecular methods for detection of Spiroplasma citri in Moroccan citrus-growing areas. Plants, 12, 667.

[38]

Saunders, D.S. and Dodd, C.W.H. (1972) Mating, insemination, and ovulation in the tsetse fly, Glossina morsitans. Journal of Insect Physiology, 18, 187-198.

[39]

Schneider, D.I. Saarman, N. Onyango, M.G. Hyseni, C. Opiro, R. Echodu, R. et al. (2019) Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda. PLoS Neglected Tropical Diseases, 13, e0007340.

[40]

Schwarz, R.S. Teixeira, É.W. Tauber, J.P. Birke, J.M. Martins, M.F. Fonseca, I. et al. (2014) Honey bee colonies act as reservoirs for two Spiroplasma facultative symbionts and incur complex, multiyear infection dynamics. MicrobiologyOpen, 3, 341-355.

[41]

Scolari, F. Benoit, J.B. Michalkova, V. Aksoy, E. Takac, P. Abd-Alla, A.M.M. et al. (2016) The Spermatophore in Glossina morsitans morsitans: insights into male contributions to reproduction. Scientific Reports, 6, 20334.

[42]

Sobel, J.M. and Chen, G.F. (2014) Unification of methods for estimating the strength of reproductive isolation. Evolution; International Journal of Organic Evolution, 68, 1511-1522.

[43]

Son, J.H. Weiss, B.L. Schneider, D.I. Dera, K.M. Gstöttenmayer, F. Opiro, R. et al. (2021) Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLoS Pathogens, 17, e1009539.

[44]

Wamwiri, F.N. and Changasi, R.E. (2016) Tsetse flies (Glossina) as vectors of human African trypanosomiasis: a review. BioMed Research International, 2016, 6201350.

[45]

Watanabe, M. Yukuhiro, F. Maeda, T. Miura, K. and Kageyama, D. (2014) Novel strain of Spiroplasma found in flower bugs of the genus Orius (Hemiptera: Anthocoridae): transovarial transmission, coexistence with Wolbachia and varied population density. Microbial Ecology, 67, 219-228.

[46]

Watts, T. Haselkorn, T.S. Moran, N.A. and Markow, T.A. (2009) Variable incidence of Spiroplasma infections in natural populations of Drosophila species. PLoS ONE, 4, e5703.

RIGHTS & PERMISSIONS

2025 Institute of Zoology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/