Evaluation of two candidate molecules—TCTP and cecropin—on the establishment of Trypanosoma brucei gambiense into the gut of Glossina palpalis gambiensis

François Sougal Ngambia Freitas , Linda De Vooght , Flobert Njiokou , Jan Van Den Abeele , Géraldine Bossard , Bernadette Tchicaya , Rosa Milagros Corrales , Sophie Ravel , Anne Geiger , David Berthier-Teyssedre

Insect Science ›› 2025, Vol. 32 ›› Issue (5) : 1747 -1760.

PDF
Insect Science ›› 2025, Vol. 32 ›› Issue (5) : 1747 -1760. DOI: 10.1111/1744-7917.70012
SPECIAL ISSUE ARTICLE

Evaluation of two candidate molecules—TCTP and cecropin—on the establishment of Trypanosoma brucei gambiense into the gut of Glossina palpalis gambiensis

Author information +
History +
PDF

Abstract

Trypanosomiasis, transmitted by tsetse flies (Glossina spp.), poses a significant health threat in 36 sub-Saharan African countries. Current control methods targeting tsetse flies, while effective, allow reinfestation. This study investigates paratransgenesis, a novel strategy to engineer symbiotic bacteria in tsetse flies, Sodalis glossinidius, to deliver anti-trypanosome compounds. Disrupting the trypanosome life cycle within the fly and reducing parasite transmission could offer a sustainable solution for trypanosomiasis control. In this context, we tested the effect of cecropin, reported to be lethal for Trypanosoma cruzi (Chagas disease) and TbgTCTP (Translationally Controlled Tumor Protein from Trypanosoma brucei gambiense), previously reported to modulate the growth of bacteria isolated from the fly microbiome, to delay the first peak of parasitemia and the death of trypanosome-infected mice. We have successfully cloned and transfected the genes encoding the two proteins into Sodalis strains. These Sodalis recombinant strains (recSodalisTbgTCTP and recSodaliscecropin) have been then microinjected into the L3 larval stage of Glossina palpalis gambiensis flies. The stability of the cloned genes was checked up to the 20th day after microinjection of recSodalis. The rate of fly emergence from untreated pupae was 95%; it was reduced by nearly 50% due to the mechanical injury caused by microinjection. It decreased to nearly 7% when larvae were injected with recSodalisTbgTCTP, which suggests TCTP could have a lethal impact to larvae development. When challenged with T. brucei gambiense, a slightly lower, but statistically non-significant, infection rate was recorded in flies harboring recSodaliscecropin compared to control flies. The effect of recSodalisTbgTCTP could not be measured due to the very low rate of fly emergence after corresponding treatment of the larvae. The results do not allow to conclude on the effect of cecropin or TCTP, delivered by para-transgenesis into the fly's gut, on the fly infection by the trypanosome. Nevertheless, the results are encouraging insofar as the technical approach works on the couple G. p. gambiensis/T. brucei gambiense. The next step will be to optimize the system and test other targets chosen among the ESPs (Excreted-Secreted Proteins) of the trypanosome secretum, or the differentially expressed genes associated with the sensitivity/resistance of the fly to trypanosome infection.

Keywords

paratransgenesis / Sodalis glossinidius / Trypanosoma / tsetse flies

Cite this article

Download citation ▾
François Sougal Ngambia Freitas, Linda De Vooght, Flobert Njiokou, Jan Van Den Abeele, Géraldine Bossard, Bernadette Tchicaya, Rosa Milagros Corrales, Sophie Ravel, Anne Geiger, David Berthier-Teyssedre. Evaluation of two candidate molecules—TCTP and cecropin—on the establishment of Trypanosoma brucei gambiense into the gut of Glossina palpalis gambiensis. Insect Science, 2025, 32(5): 1747-1760 DOI:10.1111/1744-7917.70012

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alam, U. Medlock, J. Brelsfoard, C. Pais, R. Lohs, C. Balmand, S. et al. (2011) Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathogens, 7, e1002415.

[2]

Atyame Nten, C.M. Sommerer, N. Rofidal, V. Hirtz, C. Rossignol, M. Cuny, G. et al. (2010) Excreted/secreted proteins from trypanosome procyclic strains. Journal of Biomedicine Biotechnology, 2010, 212817.

[3]

Beard, C.B. Cordon-Rosales, C. and Durvasula, R.V. (2002) Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annual Review of Entomology, 47, 123-141.

[4]

Beard, C.B. Dotson, E.M. Pennington, P.M. Eichler, S. Cordon-Rosales, C. and Durvasula, R.V. (2001) Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease. International Journal for Parasitology, 31, 621-627.

[5]

Beard, C.B. O'Neill, S.L. Mason, P. Mandelco, L. Woese, C.R. Tesh, R.B. et al. (1993) Genetic transformation and phylogeny of bacterial symbionts from tsetse. Insect Molecular Biology, 1, 123-131.

[6]

Bossard, G. Rodrigues, V. Tour, E. and Geiger, A. (2021) Mice immunization with Trypanosoma brucei gambiense translationally controlled tumor protein modulates immunoglobulin and cytokine production, as well as parasitaemia and mice survival after challenge with the parasite. Infection Genetics and Evolution, 87, 104636.

[7]

Bossard, G. Bartoli, M. Fardeau, M.L. Holzmuller, P. Ollivier, B. and Geiger, A. (2017) Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumour Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria. Gut Microbes, 8, 413-427.

[8]

Brioudes, F. Thierry, A.M. Chambrier, P. Mollereau, B. and Bendahmane, M. (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proceedings of the National Academy Sciences USA, 107, 16384-16389.

[9]

Camara, M. Ouattara, E. Duvignaud, A. Migliani, R. Camara, O. Leno, M. et al. (2017) Impact of the Ebola outbreak on Trypanosoma brucei gambiense infection medical activities in coastal Guinea, 2014-2015: a retrospective analysis from the Guinean national Human African Trypanosomiasis control program. PLoS Neglected Tropical Diseases, 11, e0006060.

[10]

Camara, O. Biéler, S. Bucheton, B. Kagbadouno, M. Mathu Ndung'u, J. Solano, P. et al. (2021) Accelerating elimination of sleeping sickness from the Guinean littoral through enhanced screening in the post-Ebola context: a retrospective analysis. PLoS Neglected Tropical Diseases, 15, e0009163.

[11]

Capewell, P. Atkins, K. Weir, W. Jamonneau, V. Camara, M. Clucas, C. et al. (2019) Resolving the apparent transmission paradox of African sleeping sickness. PLoS Biology, 17, e3000105.

[12]

Chen, W. Wang, H. Tao, S. Zheng, Y. Wu, W. Lian, F. et al. (2013) Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival. Cell Cycle, 12, 2321-2328.

[13]

Cheng, Q. and Aksoy, S. (1999) Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Molecular Biology, 8, 125-132.

[14]

Delespaux, V. Dinka, H. Masumu, J. Van den Bossche, P. and Geerts, S. (2008) Five-fold increase in Trypanosoma congolense isolates resistant to diminazene aceturate over a seven-year period in Eastern Zambia. Drug Resistance Updates, 11, 205-209.

[15]

De Vooght, L. Caljon, G. Stijlemans, B. De Baetselier, P. Coosemans, M. and Van Den Abbeele, J. (2012) Expression and extracellular release of a functional anti-trypanosome Nanobody in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Microbial Cell Factories, 11, 23.

[16]

De Vooght, L. Caljon, G. De Ridder, K. and Van Den Abbeele, J. (2014) Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microbial Cell Factories, 13, 156.

[17]

De Vooght, L. De Ridder, K. Hussain, S. Stijlemans, B. De Baetseller, P. Caljon, G. et al. (2022) Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius. PLoS Pathogens, 18, e1010376.

[18]

De Vooght, L. Van Keer, S. and Van Den Abbeele, J. (2018) Towards improving tsetse fly paratransgenesis: stable colonization of Glossina morsitans morsitans with genetically modified Sodalis. BMC Microbiology, 18, 165.

[19]

Durvasula, R.V. Gumbs, A. Panackal, A. Kruglov, O. Aksoy, S. Merrifield, R.B. et al. (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proceedings of the National Academy Sciences USA, 94, 3274-3278.

[20]

Eichhorn, T. Winter, D. Büchele, B. Dirdjaja, N. Frank, M. Lehmann, W.D. et al. (2013) Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Biochemical Pharmacology, 85, 38-45.

[21]

Farikou, O. Njiokou, F. Simo, G. Asonganyi, T. Cuny, G. and Geiger, A. (2010) Tsetse fly blood meal modification and trypanosome identification in two sleeping sickness foci in the forest of southern Cameroon. Acta Tropica, 116, 81-88.

[22]

Farikou, O. Thevenon, S. Njiokou, F. Allal, F. Cuny, G. and Geiger, A. (2011) Genetic diversity, and population structure of the secondary symbiont of tsetse flies, Sodalis glossinidius, in sleeping sickness foci in Cameroon. PLoS Neglected Tropical Diseases, 5, e1281.

[23]

Farikou, O. Simo, G. Njiokou, F. Kamé-Ngassé, G.I. Achiri Fru, M. and Geiger, A. (2023) Trypanosome infections and anemia in cattle returning from Transhumance in tsetse-infested areas of Cameroon. Microorganisms, 11, 712.

[24]

Geiger, A. Hirtz, C. Bécue, T. Bellard, E. Centeno, D. Gargani, D. et al. (2010) Exocytosis and protein secretion in Trypanosoma. BMC Microbiology, 10, 20.

[25]

Geiger, A. Hamidou Soumana, I. Tchicaya, B. Rofidal, V. Decourcelle, M. Santoni, V. et al. (2015) Differential expression of midgut proteins in Trypanosoma brucei gambiense-stimulated vs. non-stimulated Glossina palpalis gambiensis flies. Frontiers in Microbiology, 6, 444.

[26]

Geiger, A. Malele, I. Abd-Alla, A.M. and Njiokou, F. (2018) Blood feeding tsetse flies as hosts and vectors of mammals-pre-adapted African Trypanosoma: Current and expected research directions. BMC Microbiology, 18, 162.

[27]

Grébaut, P. Andjingbopou, Y. Diabakana Mansinsa, P. Manzambi, E.Z. Mpembele, F. Lejon, V. et al. (2020) Monitoring the presence of trypanosomes' DNA-Including Trypanosoma brucei gambiense DNA-from the midguts of riverine Glossina trapped in the southeast outskirts of Kinshasa City (Democratic Republic of Congo). Infection Genetics and Evolution, 77, 104095.

[28]

Hamidou Soumana, I. Klopp, C. Ravel, S. Nabihoudine, I. Tchicaya, B. and Parrinello, H.. (2015) RNA-seq de novo assembly reveals differential gene expression in Glossina palpalis gambiensis infected with Trypanosoma brucei gambiense vs non-infected and self-cured flies. Frontiers in Microbiology, 6, 1259.

[29]

Kadioglu, O. and Efferth, T. (2016) Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells. Investigational New Drugs, 34, 515-521.

[30]

Kim, W. Koo, H. Richman, A.M. Seeley, D. Vizioli, J. Klocko, A.D. et al. (2004) Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. Journal of Medical Entomology, 41, 447-455.

[31]

Kokoza, V. Ahmed, A. Woon Shin, S. Okafor, N. Zou, Z. and Raikhel, A.S. (2010) Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proceedings of the National Academy Sciences USA, 107, 8111-8116.

[32]

London Declaration on Neglected Tropical Diseases (2012) http://www.who.int/neglected_diseases/London_Declaration_NTDs.pdf. Accessed date 30 January 2012.

[33]

Marx, C.J. and Lidstrom, M.E. (2001) Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology (Reading, England), 147, 2065-2075.

[34]

McKenzie, G.J. and Craig, N.L. (2006) Fast, easy and efficient: site-specific insertion of transgenes into Enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiology, 6, 39.

[35]

Mehlitz, D. and Molyneux, D.H. (2019) The elimination of Trypanosoma brucei gambiense? Challenges of reservoir hosts and transmission Cycles: expect the unexpected. Parasite Epidemiology and Control, 2019, e00113.

[36]

N'Djetchi, M.K. Ilboudo, H. Koffi, M. Kabore, J. Kabore, J.W. Kaba, D. et al. (2017) The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Cote d'Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense. PLoS Neglected Tropical Diseases, 11, e0005993.

[37]

Njiokou, F. Simo, G. Mbida Mbida, J.A. Truc, P. Cuny, G. and Herder, S. (2004) A study of host preference in tsetse flies using a modified heteroduplex PCR-based method. Acta Tropica, 91, 117-120.

[38]

Oumarou, F. Flobert, N. Gustave, S. Irma, K.N.G. Steve, S. Louis, B. et al. (2022) Prevalence of trypanosome infection in three cattle breeds and effect on cattle annemia in the Dodeo cattle rearing area of Cameroun. International Journal of Veterinary Science and Medical Diagnosis, 3, 1.

[39]

Rio, R.V. Hu, Y. and Aksoy, S. (2004) Strategies of the home-team: symbioses exploited for vector-borne disease control. Trends in Microbiology, 12, 325-336.

[40]

Roque, C.G. Wong, H.H. Lin, J.Q. and Holt, C.E. (2016) Tumor protein TCTP regulates axon development in the embryonic visual system. Development (Cambridge, England), 143, 1134-1148.

[41]

Seo, E.J and Efferth, T. (2016) Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget, 7, 16818-16839.

[42]

Shaw, A.P. Torr, S.J. Waiswa, C. Cecchi, G. Wint, G.R. Mattioli, R.C. et al. (2013) Reply to the letter to the editor by Bouyer et al. (2013). Preventive Veterinary Medicine, 112, 447-449.

[43]

Simarro, P.P. Jannin, J. and Cattand, P. (2008) Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Medicine, 5, e55.

[44]

Simo, G. Mbida Mbida, J.A. Ebo'o Eyenga, V. Asonganyi, T. Njiokou, F. and Grébaut, P. (2014) Challenges towards the elimination of Human African Trypanosomiasis in the sleeping sickness focus of Campo in southern Cameroon. Parasites Vectors, 7, 374.

[45]

Simo, G. Asonganyi, T. Nkinin, S.W. Njiokou, F. and Herder, S. (2006) High prevalence of Trypanosoma brucei gambiense group 1 in pigs from the Fontem sleeping sickness focus in Cameroon. Veterinary Parasitology, 139, 57-66.

[46]

Simo, G. Njiokou, F. Mbida Mbida, J.A. Njitchouang, G.R. Herder, S. Asonganyi, T. and Cuny, G. (2008). Tsetse fly host preference from sleeping sickness foci in Cameroon: epidemiological implications. Infect. Genet. Evol., 8, 34-39.

[47]

Stierum, R. Gaspari, M. Dommels, Y. Ouatas, T. Pluk, H. Jespersen, S. et al. (2003) Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2. Biochimica Et Biophysica Acta, 1650, 73-91.

[48]

Susini, L. Besse, S. Duflaut, D. Lespagnol, A. Beekman, C. Fiucci, G. et al. (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death and Differentiation, 15, 1211-1220.

[49]

The Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). (2018) http://www.who.int/trypanosomiasis_african/partners/pattec/en/ Accessed date 06 January 2018.

[50]

Vreysen, M.J. (2001) Principles of area-wide integrated tsetse fly control using the sterile insect technique. Medecine Tropicate, 61, 397-411.

[51]

Welburn, S.C. and Maudlin, I. (2012) Priorities for the elimination of sleeping sickness. Advances in Parasitology, 79, 299-337.

[52]

WHO (2023a) Vector-borne diseases (who.int). http://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.

[53]

WHO (2023b) Trypanosomiasis, human African (sleeping sickness) (who.int). http://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness).

[54]

WHO (2002) WHO programme to eliminate sleeping sickness—building a global alliance. https://iris.who.int/bitstream/handle/10665/67352/WHO_CDS_CSR_EPH_2002.13.pdf;sequence=1.

[55]

Yang, L. Weiss, B.L. Williams, A. Aksoy, E. De Silva Orfano, A. Son, J.H. et al. (2022) Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly's midgut environment. PloS Pathogens, 17, e1009475.

RIGHTS & PERMISSIONS

2025 The Author(s). Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/