Intraspecific variation of thermal tolerance along elevational gradients: the case of a widespread diving beetle (Coleoptera: Dytiscidae)

Susana Pallarés , José Antonio Carbonell , Félix Picazo , David T. Bilton , Andrés Millán , Pedro Abellán

Insect Science ›› 2025, Vol. 32 ›› Issue (4) : 1453 -1465.

PDF
Insect Science ›› 2025, Vol. 32 ›› Issue (4) : 1453 -1465. DOI: 10.1111/1744-7917.13466
ORIGINAL ARTICLE

Intraspecific variation of thermal tolerance along elevational gradients: the case of a widespread diving beetle (Coleoptera: Dytiscidae)

Author information +
History +
PDF

Abstract

Species distributed across wide elevational gradients are likely to experience local thermal adaptation and exhibit high thermal plasticity, as these gradients are characterised by steep environmental changes over short geographic distances (i.e., strong selection differentials). The prevalence of adaptive intraspecific variation in thermal tolerance with elevation remains unclear, however, particularly in freshwater taxa. We explored variation in upper and lower thermal limits and acclimation capacity among Iberian populations of adults of the widespread water beetle Agabus bipustulatus (Dytiscidae) across a 2000 m elevational gradient, from lowland to alpine areas. Since mean and extreme temperatures decline with elevation, we predicted that populations at higher elevations will show lower heat tolerance and higher cold tolerance than lowland ones. We also explored whether acclimation capacity is positively related with climatic variability across elevations. We found significant variation in thermal limits between populations of A. bipustulatus, but no evidence of local adaptation to different thermal conditions across the altitudinal gradient, as relationships between thermal limits and elevation or climatic variables were largely nonsignificant. Furthermore, plasticities of both upper and lower thermal limits were consistently low in all populations. These results suggest thermal niche conservatism in this species, likely due to gene flow counteracting the effects of divergent selection, or adaptations in other traits that buffer exposure to climate extremes. The limited adaptive potential and plasticity of thermal tolerance observed in A. bipustulatus suggest that even generalist species, distributed across wide environmental gradients, may have limited resilience to global warming.

Keywords

acclimation response ratios / climate extremes hypothesis / climatic variability hypothesis / Coleoptera / heat coma temperature / supercooling point

Cite this article

Download citation ▾
Susana Pallarés, José Antonio Carbonell, Félix Picazo, David T. Bilton, Andrés Millán, Pedro Abellán. Intraspecific variation of thermal tolerance along elevational gradients: the case of a widespread diving beetle (Coleoptera: Dytiscidae). Insect Science, 2025, 32(4): 1453-1465 DOI:10.1111/1744-7917.13466

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armstrong, E.J. Tanner, R.L. and Stillman, J.H. (2019) High heat tolerance is negatively correlated with heat tolerance plasticity in nudibranch mollusks. Physiological and Biochemical Zoology, 92, 430-444.

[2]

Auld, J.R. Agrawal, A.A. and Relyea, R.A. (2010) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277, 503-511.

[3]

Bachmann, J.C. Jansen van Rensburg, A. Cortazar-Chinarro, M. Laurila, A. and Van Buskirk, J. (2020) Gene flow limits adaptation along steep environmental gradients. The American Naturalist, 195, E67-E86.

[4]

Barria, A.M. and Bacigalupe, L.D. (2017) Intraspecific geographic variation in thermal limits and acclimatory capacity in a wide distributed endemic frog. Journal of Thermal Biology, 69, 254-260.

[5]

Bartolini, F. and Giomi, F. (2021) Microclimate drives intraspecific thermal specialization: conservation perspectives in freshwater habitats. Conservation Physiology, 9, coab006.

[6]

Bennett, S. Duarte, C.M. Marbà, N. and Wernberg, T. (2019) Integrating within-species variation in thermal physiology into climate change ecology. Philosophical Transactions of the Royal Society B, 374, 20180550.

[7]

Bilton, D.T. (2023) Dispersal in Dytiscidae. In Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae) (ed. D.A. Yee), pp. 505-528. Springer International Publishing, Cham.

[8]

Bishop, T.R. Robertson, M.P. Rensburg, B.J. and Parr, C.L. (2017) Coping with the cold: minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecological Entomology, 42, 105-114.

[9]

Bogert, C.M. (1949) Thermoregulation in reptiles, a factor in evolution. Evolution; International Journal of Organic Evolution, 3, 195-211.

[10]

Buckley, L.B. and Huey, R.B. (2016) How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integrative and Comparative Biology, 56, 98-109.

[11]

Calosi, P. Bilton, D.T. Spicer, J.I. Votier, S.C. and Atfield, A. (2010) What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). Journal of Animal Ecology, 79, 194-204.

[12]

Calosi, P. Bilton, D.T. Spicer, J.I. and Atfield, A. (2008) Thermal tolerance and geographical range size in the Agabus brunneus group of European diving beetles (Coleoptera: Dytiscidae). Journal of Biogeography, 35, 295-305.

[13]

Carbonell, J.A. Pallarés, S. Velasco, J. Millán, A. and Abellán, P. (2024a) Thermal tolerance does not explain the altitudinal segregation of lowland and alpine aquatic insects. Journal of Thermal Biology, 121, 103862.

[14]

Campbell-Staton, S.C. Cheviron, Z.A. Rochette, N. Catchen, J. Losos, J.B. and Edwards, S.V. (2017) Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science, 357, 495-498.

[15]

Carbonell, J.A. Pallarés, S. Velasco, J. Millán, A. Picazo, F. and Abellán, P. (2024b) Thermal biology of aquatic insects in alpine lakes: Insights from diving beetles. Freshwater Biology, 69, 34-46.

[16]

Chevin, L.M. and Hoffmann, A.A. (2017) Evolution of phenotypic plasticity in extreme environments. Philosophical Transactions of the Royal Society B, 372, 20160138.

[17]

Chevin, L.M. Lande, R. and Mace, G.M. (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biology, 8, e1000357.

[18]

Chown, S.L. and Nicolson, S. (2004) Insect Physiological Ecology: Mechanisms and Patterns. Oxford University Press, Oxford. p. 243.

[19]

Classen, R. and Dettner, K. (1983) Pygidial defensive titer and population structure of Agabus bipustulatus L. and Agabus paludosus F. (Coleoptera, Dytiscidae). Journal of Chemical Ecology, 9, 201-209.

[20]

Coleman, M.A. and Wernberg, T. (2020) The silver lining of extreme events. Trends in Ecology and Evolution, 35, 1065-1067.

[21]

Coleman, M.A. Minne, A.J. Vranken, S. and Wernberg, T. (2020) Genetic tropicalisation following a marine heatwave. Scientific Reports, 10, 12726.

[22]

Comte, L. and Olden, J.D. (2017) Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Global Change Biology, 23, 728-736.

[23]

DeMarche, M.L. Doak, D.F. and Morris, W.F. (2019) Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Global Change Biology, 25, 775-793.

[24]

Dewitt, T.J. Sih, A. and Wilson, D.S. (1998) Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution, 13, 77-81.

[25]

Díaz, F. Sierra, E. Re, A.D. and Rodríguez, L. (2002) Behavioural thermoregulation and critical thermal limits of Macrobrachium acanthurus (Wiegman). Journal of Thermal Biology, 27, 423-428.

[26]

Drotz, M.K. Brodin, T. and Nilsson, A.N. (2010) Multiple origins of elytral reticulation modifications in the West Palearctic Agabus bipustulatus complex (Coleoptera, Dytiscidae). PLoS ONE, 5, e9034.

[27]

Enriquez-Urzelai, U. Tingley, R. Kearney, M.R. Sacco, M. Palacio, A.S. Tejedo, M. et al. (2020) The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. Journal of Animal Ecology, 89, 1722-1734.

[28]

Fahy, J.C. Demierre, E. and Oertli, B. (2024) Long-term monitoring of water temperature and macroinvertebrates highlights climate change threat to alpine ponds in protected areas. Biological Conservation, 290, 110461.

[29]

Farallo, V.R. Muñoz, M.M. Uyeda, J.C. and Milles, D.B. (2020) Scaling between macro-to microscale climatic data reveals strong phylogenetic intertia in niche evolution in plethodontid salamanders. Evolution, 74, 979-991.

[30]

Fick, S.E. and Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.

[31]

Freidenburg, L.K. and Skelly, D.K. (2004) Microgeographical variation in thermal preference by an amphibian. Ecology Letters, 7, 369-373.

[32]

Futuyma, D.J. (2010) Evolutionary constraint and ecological consequences. Evolution; International Journal of Organic Evolution, 64, 1865-1884.

[33]

Galewski, K. (1971) A study on morphobiotic adaptions of European species of the Dytiscidae (Coleoptera). Polish Journal of Entomology, 4l, 487-702.

[34]

Ghalambor, C.K. McKay, J.K. Carroll, S.P. and Reznick, D.N. (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21, 394-407.

[35]

Gunderson, A.R. and Stillman, J.H. (2015) Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proceedings of the Royal Society B, 282, 20150401.

[36]

Gurgel, C.F.D. Camacho, O. Minne, A.J. Wernberg, T. and Coleman, M.A. (2020) Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Current Biology, 30, 1199-1206.

[37]

Gutiérrez-Pesquera, L.M. Tejedo, M. Camacho, A. Enriquez-Urzelai, U. Katzenberger, M. Choda, M. et al. (2022) Phenology and plasticity can prevent adaptive clines in thermal tolerance across temperate mountains: the importance of the elevation-time axis. Ecology and Evolution, 12, e9349.

[38]

Gutiérrez-Pesquera, L.M. Tejedo, M. Olalla-Tárraga, M.Á. Duarte, H. Nicieza, A. and Solé, M. (2016) Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. Journal of Biogeography, 43, 1166-1178.

[39]

Gvoždík, L. and Castilla, A.M. (2001) A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along an altitudinal gradient. Journal of Herpetology, 35, 486-492.

[40]

Huey, R.B. Hertz, P.E. and Sinervo, B. (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. The American Naturalist, 161, 357-366.

[41]

Huey, R.B. Kearney, M.R. Krockenberger, A. Holtum, J.A.M. Jess, M. and Williams, S.E. (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B, 367, 1665-1679.

[42]

Jackson, D.J. (1952) Observations on the capacity for flight of water beetles. Proceedings of the Royal Entomology Society of London A, 27, 57-70.

[43]

Janzen, D.H. (1967) Why mountain passes are higher in the tropics. The American Naturalist, 101, 233-249.

[44]

Johnson, M.F. Wilby, R.L. and Toone, J.A. (2014) Inferring air-water temperature relationships from river and catchment properties. Hydrological Processes, 28, 2912-2928.

[45]

Kawecki, T.J. and Ebert, D. (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241.

[46]

Keller, I. Alexander, J.M. Holderegger, R. and Edwards, P.J. (2013) Widespread phenotypic and genetic divergence along altitudinal gradients in animals. Journal of Evolutionary Biology, 26, 2527-2543.

[47]

Kingsolver, J.G. and Buckley, L.B. (2017) Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philosophical Transactons of the Royal Society B, 374, 20160147.

[48]

Kirkpatrick, M. and Barton, N.H. (1997) Evolution of a species’ range. The American Naturalist, 46, 954-971.

[49]

Klok, C.J. and Chown, S.L. (2003) Resistance to temperature extremes in sub-Antarctic weevils: Interspecific variation, population differentiation and acclimation. Biological Journal of the Linnean Society, 78, 401-414.

[50]

Körner, C. (2007) The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution, 22, 569-574.

[51]

Lardies, M.A. Arias, M.B. and Bacigalupe, L.D. (2010) Phenotypic covariance matrix in lifehistory traits along a latitudinal gradient: a study case in a geographically widespread crab on the coast of Chile. Marine Ecology Progress Series, 412, 179-187.

[52]

Lenormand, T. (2002) Gene flow and the limits to natural selection. Trends in Ecology and Evolution, 17, 183-189.

[53]

Levy, R.A. and Nufio, C.R. (2015) Dispersal potential impacts size clines of grasshoppers across an elevation gradient. Oikos, 124, 610-619.

[54]

Lundkvist, E. Landin, J. and Karlsson, F. (2002) Dispersing diving beetles (Dytiscidae) in agricultural and urban landscapes in south-eastern Sweden. Annales Zoologici Fennici, 39, 109-123.

[55]

Lutterschmidt, W.I. and Hutchison, V.H. (1997a) The critical thermal maximum: data to support the onset of spams as the definitive end point. Canadian Journal of Zoology, 75, 1553-1560.

[56]

Lutterschmidt, W.I. and Hutchison, V.H. (1997b) The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75, 1561-1574.

[57]

Maebe, K. De Baets, A. Vandamme, P. Vereecken, N.J. Michez, D. and Smagghe, G. (2021) Impact of intraspecific variation on measurements of thermal tolerance in bumble bees. Journal of Thermal Biology, 99, 103002.

[58]

Magozzi, S. and Calosi, P. (2015) Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming. Global Change Biology, 21, 181-194.

[59]

Millán, A. Sánchez-Fernández, D. Abellán, P. Picazo, F. Carbonell, J.A. Lobo, J.M. et al. (2014) Atlas de los coleópteros acuáticos de España peninsular. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid.

[60]

Muñoz, M.M. Stimola, M.A. Algar, A.C. Conover, A. Rodriguez, A.J. Landestoy, M.A. et al. (2014) Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proceedings of the Royal Society, 281, 20132433.

[61]

Murren, C.J. Auld, J.R. Callahan, H. Ghalambor, C.K. Handelsman, C.A. Heskel, M.A. et al. (2015) Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity, 115, 293-301.

[62]

Naya, D. and Bozinovic, F. (2012) Metabolic scope of fish species increases with distributional range. Evolutionary Ecology Research, 14, 769-777.

[63]

O'Neill, G.A. Hamman, A. and Wang, T. (2008) Accounting for population variation improves estimates of the impact of climate change on species’ growth and distribution. Journal of Applied Ecology, 45, 1040-1049.

[64]

Overgaard, J. Kearney, M.R. and Hoffmann, A.A. (2014) Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Global Change Biology, 20, 1738-1750.

[65]

Pallarés, S. Garoffolo, D. Rodríguez, B. and Sánchez-Fernández, D. (2024) Role of climatic variability in shaping intraspecific variation of thermal tolerance in Mediterranean water beetles. Insect Science, 31, 285-298.

[66]

Pallarés, S. Millán, A. Mirón, J.M. Velasco, J. Sánchez-Fernández, D. Botella-Cruz, M. et al. (2020) Assessing the capacity of endemic alpine water beetles to face climate change. Insect Conservation and Diversity, 13, 271-282.

[67]

Pintanel, P. Tejedo, M. Merino-Viteri, A. Almeida-Reinoso, F. Salinas-Ivanenko, S. López-Rosero, A.C. et al. (2022) Elevational and local climate variability predicts thermal breadth of mountain tropical tadpoles. Ecography, 2022, e05906.

[68]

Pintanel, P. Tejedo, M. Ron, S.R. Llorente, G.A. and Merino-Viteri, A. (2019) Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs. Journal of Biogeography, 46, 1664-1675.

[69]

Pither, J. (2003) Climate tolerance and interspecific variation in geographic range size. Proceedings of the Royal Society B, 270, 475-481.

[70]

R Core Team. (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

[71]

Relyea, R.A. (2002) Costs of phenotypic plasticity. The American Naturalist, 159, 272-282.

[72]

Ribera, I. (2008) Habitat constraints and the generation of diversity in freshwater macroinvertebrates. In Aquatic Insects: Challenges to Populations (eds. J. Lancaster & R.A. Briers), pp. 289-311. CAB International Publishing, Wallingford.

[73]

Senior, A.F. Atkins, Z.S. Clemann, N. Gardner, M.G. Schroder, M. While, G.M. et al. (2019) Variation in thermal biology of three closely related lizard species along an elevation gradient. Biological Journal of the Linnean Society, 127, 278-291.

[74]

Shatz, I. (2024) Assumption-checking rather than (just) testing: The importance of visualization and effect size in statistical diagnostics. Behavior Research Methods, 56, 826-845.

[75]

Shah, A.A. Funk, W.C. and Ghalambor, C.K. (2017a) Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integrative and Comparative Biology, 57, 977-987.

[76]

Shah, A.A. Gill, B.A. Encalada, A.C. Flecker, A.S. Funk, W.C. Guayasamin, J.M. et al. (2017b) Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology, 31, 2118-2127.

[77]

Sinclair, B.J. Marshall, K.E. Sewell, M.A. Levesque, D.L. Willett, C.S. Slotsbo, S. et al. (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters, 19, 1372-1385.

[78]

Sinclair, B.J. Williams, C.M. and Terblanche, J.S. (2012) Variation in thermal performance among insect populations. Physiological and Biochemical Zoology, 85, 594-606.

[79]

Slatyer, R.A. Nash, M.A. and Hoffmann, A.A. (2016) Scale-dependent thermal tolerance variation in Australian mountain grasshoppers. Ecography, 39, 572-582.

[80]

Smale, D.A. and Wernberg, T. (2013) Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society B, 280, 20122829.

[81]

Sørensen, J.G. Norry, F.M. Scannapieco, A.C. and Loeschcke, V. (2005) Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World. Journal of Evolutionary Biology, 18, 829-837.

[82]

Stevens, G.C. (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133, 240-256.

[83]

Stillman, J.H. (2003) Acclimation capacity underlies susceptibility to climate change. Science, 301, 65.

[84]

Sultan, S.E. and Spencer, H.G. (2002) Metapopulation structure favors plasticity over local adaptation. The American Naturalist, 160, 271-283.

[85]

Sunday, J. Bennett, J.M. Calosi, P. Clusella-Trullas, S. Gravel, S. Hargreaves, A.L. et al. (2019) Thermal tolerance patterns across latitude and elevation. Philosophical Transactions of the Royal Society B, 374, 20190036.

[86]

Tigano, A. and Friesen, V.L. (2016) Genomics of local adaptation with gene flow. Molecular Ecology, 25, 2144-2164.

[87]

Tonione, M.A. Cho, S.M. Richmond, G. Irian, C. and Tsutsui, N.D. (2020) Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant, Prenolepis imparis. Ecology and Evolution, 10, 4749-4761.

[88]

Trochet, A. Dupoué, A. Souchet, J. Bertrand, R. Deluen, M. Murarasu, S. et al. (2018) Variation of preferred body temperatures along an altitudinal gradient: a multi-species study. Journal of Thermal Biology, 77, 38-44.

[89]

Valladares, F. Matesanz, S. Guilhaumon, F. Araújo, M.B. Balaguer, L. Benito-Garzón, M. et al. (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17, 1351-1364.

[90]

Wehner, R. and Wehner, S. (2011) Parallel evolution of thermophilia: daily and seasonal foraging patterns of heatadapted desert ants: Cataglyphis and Ocymyrmex species. Physiological Entomology, 36, 271-281.

RIGHTS & PERMISSIONS

2024 The Author(s). Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/