Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life

Perry G. Beasley-Hall , Yukihiro Kinjo , Harley A. Rose , James Walker , Charles S. P. Foster , Toby G. L. Kovacs , Thomas Bourguignon , Simon Y.W. Ho , Nathan Lo

Insect Science ›› 2024, Vol. 31 ›› Issue (6) : 1810 -1821.

PDF
Insect Science ›› 2024, Vol. 31 ›› Issue (6) : 1810 -1821. DOI: 10.1002/1744-7917.13339
ORIGINAL ARTICLE

Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life

Author information +
History +
PDF

Abstract

Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.

Keywords

Blattabacterium / endosymbiosis / gene loss / molecular evolution / parallel evolution / subterranean habitats

Cite this article

Download citation ▾
Perry G. Beasley-Hall, Yukihiro Kinjo, Harley A. Rose, James Walker, Charles S. P. Foster, Toby G. L. Kovacs, Thomas Bourguignon, Simon Y.W. Ho, Nathan Lo. Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life. Insect Science, 2024, 31(6): 1810-1821 DOI:10.1002/1744-7917.13339

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abascal, F.,Zardoya, R. and Telford, M.J. (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research,38,W7–W13.

[2]

Altenhoff, A.M.,Train, C.M.,Gilbert, K.J.,Mediratta, I.,de Farias, T.M.,Moi, D. et al. (2021) OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Research,49,D373–D379.

[3]

Arab, D.A.,Bourguignon, T.,Wang, Z.Q.,Ho, S.Y.W. and Lo, N. (2020) Evolutionary rates are correlated between cockroach symbionts and mitochondrial genomes. Biology Letters,16,20190702.

[4]

Bankevich, A.,Nurk, S.,Antipov, D.,Gurevich, A.A.,Dvorkin, M.,Kulikov, A.S. et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology,19,455–477.

[5]

Beasley-Hall, P.G.,Rose, H.A.,Walker, J.,Kinjo, Y.,Bourguignon, T. and Lo, N. (2021) Digging deep: a revised phylogeny of Australian burrowing cockroaches (Blaberidae: Panesthiinae, Geoscapheinae) confirms extensive nonmonophyly and provides insights into biogeography and evolution of burrowing. Systematic Entomology,46,767–783.

[6]

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological),57,289–300.

[7]

Bourguignon, T.,Kinjo, Y.,Villa-Martín, P.,Coleman, N.V.,Tang, Q.,Arab, D.A. et al. (2020) Increased mutation rate is linked to genome reduction in prokaryotes. Current Biology,30,3848–3855.

[8]

Brooks, M.A. (1970) Comments on the classification of intracellular symbiotes of cockroaches and a description of the species. Journal of Invertebrate Pathology,16,249–258.

[9]

Brooks, M.A. and Richards, A.G. (1955) Intracellular symbiosis in cockroaches. I. Production of aposymbiotic cockroaches. The Biological Bulletin,109,22–39.

[10]

Darling, A.E.,Mau, B. and Perna, N.T. (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE,5,e11147.

[11]

Degnan, P.H.,Lazarus, A.B. and Wernegreen, J.J. (2005) Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Research,15,1023–1033.

[12]

Djernæs, M.,Varadinova, Z.,Kotyl, M.,Eulitz, U. and Klass, K. (2020) Phylogeny and life history evolution of Blaberoidea (Blattodea). Arthropod Systematics and Phylogeny,78,29–67.

[13]

Evangelista, D.A.,Wipfler, B.,Béthoux, O.,Donath, A.,Fujita, M.,Kohli, M.K. et al. (2019) An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proceedings of the Royal Society B: Biological Sciences,286,20182076.

[14]

Gould, S.J. (1989) Wonderful Life: The Burgess Shale and the Nature of History. W.W. Norton & Company.

[15]

Heizer Jr., E.M.,Raiford, D.W.,Raymer, M.L.,Doom, T.E.,Miller, R.V. and Krane, D.E. (2006) Amino acid cost and codon-usage biases in 6 prokaryotic genomes: a whole-genome analysis. Molecular Biology and Evolution,23,1670–1680.

[16]

Hughes, A.L. (2007) Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity,99,364–373.

[17]

Husnik, F.,Nikoh, N.,Koga, R.,Ross, L.,Duncan, R.P.,Fujie, M. et al. (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell,153,1567–1578.

[18]

Jennings, E.C.,Korthauer, M.W.,Hamilton, T.L. and Benoit, J.B. (2019) Matrotrophic viviparity constrains microbiome acquisition during gestation in a live-bearing cockroach,Diploptera punctata. Ecology and Evolution,9,10601–10614.

[19]

Kaleta, C.,Schäuble, S.,Rinas, U. and Schuster, S. (2013) Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnology Journal,8,1105–1114.

[20]

Kimura, M. (1968) Evolutionary rate at the molecular level. Nature,217,624–626.

[21]

Kinjo, Y.,Bourguignon, T.,Tong, K.J.,Kuwahara, H.,Lim, S.J.,Yoon, K.B. et al. (2018) Parallel and gradual genome erosion in the Blattabacterium endosymbionts of Mastotermes darwiniensis and Cryptocercus wood roaches. Genome Biology and Evolution,10,1622–1630.

[22]

Kinjo, Y.,Lo, N.,Martín, P.V.,Tokuda, G. and Pigolotti, S. (2021) Enhanced mutation rate, relaxed selection, and the “domino effect” are associated with gene loss in Blattabacterium, a cockroach endosymbiont. Molecular Biology and Evolution,38,3820–3831.

[23]

Kinjo, Y.,Saitoh, S. and Tokuda, G. (2015) An efficient strategy developed for next-generation sequencing of endosymbiont genomes performed using crude DNA isolated from host tissues: a case study of Blattabacterium cuenoti inhabiting the fat bodies of cockroaches. Microbes and Environments,30,208–220.

[24]

Kolbe, D.L. and Eddy, S.R. (2011) Fast filtering for RNA homology search. Bioinformatics,27,3102–3109.

[25]

Lamelas, A.,Pérez-Brocal, V.,Gómez-Valero, L.,Gosalbes, M.J.,Moya, A. and Latorre, A. (2008) Evolution of the secondary symbiont “Candidatus serratia symbiotica” in aphid species of the subfamily Lachninae. Applied and Environmental Microbiology,74,4236–4240.

[26]

Lamelas, A. Gosalbes, M.J.,Manzano-Marín, A.,Peretó J.,Moya, A. and Latorre, A. (2011) Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont. PLoS Genetics,7,e1002357.

[27]

Laslett, D. and Canback, B. (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research,32,11–16.

[28]

Lo, N.,Beninati, T.,Stone, F.,Walker, J. and Sacchi, L. (2007) Cockroaches that lack Blattabacterium endosymbionts: the phylogenetically divergent genus Nocticola. Biology Letters,3,327–330.

[29]

Lo, N.,Tong, K.J.,Rose, H.A.,Ho, S.Y.,Beninati, T.,Low, D.L. et al. (2016) Multiple evolutionary origins of Australian soil-burrowing cockroaches driven by climate change in the Neogene. Proceedings of the Royal Society B: Biological Sciences,283,20152869.

[30]

Lundgren, J.G. and Lehman, R.M. (2010) Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS ONE,5,e10831.

[31]

Macías, L.G.,Barrio, E. and Toft, C. (2020) Gwidecodeml: a python package for testing evolutionary hypotheses at the genome-wide level. G3: Genes, Genomes, Genetics,10,4369–4372.

[32]

Maekawa, K.,Lo, N.,Rose, H.A. and Matsumoto, T. (2003) The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proceedings of the Royal Society of London Series B: Biological Sciences,270,1301–1307.

[33]

Manzano-Marín, A.,Simon, J.C. and Latorre, A. (2016) Reinventing the wheel and making it round again: evolutionary convergence in BuchneraSerratia symbiotic consortia between the distantly related lachninae aphids Tuberolachnus salignus and Cinara cedri. Genome Biology and Evolution,8,1440–1458.

[34]

Martin, H.A. (2006) Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments,66,533–563.

[35]

Martino, M.E.,Joncour, P.,Leenay, R.,Gervais, H.,Shah, M.,Hughes, S. et al. (2018) Bacterial adaptation to the hosts diet is a key evolutionary force shaping Drosophila-Lactobacillus symbiosis. Cell Host & Microbe,24,109–119.

[36]

Mitterboeck, T.F.,Liu, S.,Adamowicz, S.J.,Fu, J.,Zhang, R.,Song, W. et al. (2017) Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes. GigaScience,6,gix073.

[37]

Monnin, D.,Jackson, R.,Kiers, E.T.,Bunker, M.,Ellers, J. and Henry, L.M. (2020) Parallel evolution in the integration of a co-obligate aphid symbiosis. Current Biology,30,1949–1957.

[38]

Neef, A.,Latorre, A.,Peretó J.,Silva, F.J.,Pignatelli, M. and Moya, A. (2011) Genome economization in the endosymbiont of the wood roach Cryptocercus punctulatus due to drastic loss of amino acid synthesis capabilities. Genome Biology and Evolution,3,1437–1448.

[39]

Ohta, T. (1973) Slightly deleterious mutant substitutions in evolution. Nature,246,96–98.

[40]

Patiño-Navarrete, R.,Moya, A.,Latorre, A. and Peretó J. (2013) Comparative genomics of Blattabacterium cuenoti: the frozen legacy of an ancient endosymbiont genome. Genome Biology and Evolution,5,351–361.

[41]

Patiño-Navarrete, R.,Piulachs, M.D.,Belles, X.,Moya, A.,Latorre, A. and Peretó J. (2014) The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont. Biology Letters,10,20140407.

[42]

Rennison, D.J.,Rudman, S.M. and Schluter, D. (2019) Parallel changes in gut microbiome composition and function during colonization, local adaptation and ecological speciation. Proceedings of the Royal Society B: Biological Sciences,286,20191911.

[43]

Rio, R.V.M., Attardo, G.M. and Weiss, B.L. (2016) Grandeur alliances: symbiont metabolic integration and obligate arthropod hematophagy. Trends in Parasitology,32,739–749.

[44]

Ruby, E.G. (1996) Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annual Review of Microbiology,50,591–624.

[45]

Rugg, D. and Rose, H.A. (1991) Biology of Macropanesthia rhinoceros Saussure (Dictyoptera: Blaberidae). Annals of the Entomological Society of America,84,575–582.

[46]

Sabree, Z.L.,Kambhampati, S. and Moran, N.A. (2009) Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proceedings of the National Academy of Sciences USA,106,19521–19526.

[47]

Seemann, T. (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics,30,2068–2069.

[48]

Sevellec, M.,Derome, N. and Bernatchez, L. (2018) Holobionts and ecological speciation: the intestinal microbiota of lake whitefish species pairs. Microbiome,6,47.

[49]

Sloan, D.B.,Nakabachi, A.,Richards, S.,Qu, J.,Murali, S.C.,Gibbs, R.A. et al. (2014) Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Molecular Biology and Evolution,31,857–871.

[50]

Sloan, D.B. and Moran, N.A. (2012) Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Molecular Biology and Evolution,29,3781–3792.

[51]

Stern, D.L. (2013) The genetic causes of convergent evolution. Nature Reviews Genetics,14,751–764.

[52]

Sullam, K.E.,Rubin, B.E.,Dalton, C.M.,Kilham, S.S.,Flecker, A.S. and Russell, J.A. (2015) Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies. The ISME Journal,9,1508–1522.

[53]

Syberg-Olsen, M.J.,Garber, A.I.,Keeling, P.J.,McCutcheon, J.P. and Husnik, F. (2022) Pseudofinder: detection of pseudogenes in prokaryotic genomes. Molecular Biology and Evolution,39,msac153.

[54]

Tamas, I.,Wernegreen, J.J.,Nystedt, B.,Kauppinen, S.N.,Darby, A.C.,Gomez-Valero, L. et al. (2008) Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. Proceedings of the National Academy of Sciences USA,105,14934–14939.

[55]

Tamazian, G.,Dobrynin, P.,Krasheninnikova, K.,Komissarov, A.,Koepfli, K.P. and O’Brien, S.J. (2016) Chromosomer: a reference-based genome arrangement tool for producing draft chromosome sequences. GigaScience,5,38.

[56]

Tokuda, G.,Elbourne, L.D.,Kinjo, Y.,Saitoh, S.,Sabree, Z.,Hojo, M. et al. (2013) Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach. Biology Letters,9,20121153.

[57]

Truong, D.T.,Franzosa, E.A.,Tickle, T.L.,Scholz, M.,Weingart, G.,Pasolli, E. et al. (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nature Methods,12,902–903.

[58]

Consortium U.P. (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research,49,D480–D489.

[59]

Vicente, C.S.L.,Mondal, S.I.,Akter, A.,Ozawa, S.,Kikuchi, T. and Hasegawa, K. (2018) Genome analysis of new Blattabacterium spp., obligatory endosymbionts of Periplaneta fuliginosa and P. japonica. PLoS ONE,13,e0200512.

[60]

Walker, B.J.,Abeel, T.,Shea, T.,Priest, M.,Abouelliel, A.,Sakthikumar, S. et al. (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE,9,e112963.

[61]

Williams, L.E. and Wernegreen, J.J. (2010) Unprecedented loss of ammonia assimilation capability in a urease-encoding bacterial mutualist. BMC Genomics [Electronic Resource],11,687.

[62]

Woolfit, M.,Iturbe-Ormaetxe, I.,McGraw, E.A. and O’Neill, S.L. (2009) An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. Molecular Biology and Evolution,26,367–374.

[63]

Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution,24,1586–1591.

RIGHTS & PERMISSIONS

2024 The Authors. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/