Genome-wide characterization of LTR retrotransposons provides new insights into missed gene annotation and gene expression effects in pear genomes

Chao Wang , Yan Yan , Xuming Chen , Yunqi Zhang , Zewen Wang , Qionghou Li , Xin Qiao , Xiao Wu , Shaoling Zhang , Hao Yin

Horticulture Advances ›› 2025, Vol. 3 ›› Issue (1) : 31

PDF
Horticulture Advances ›› 2025, Vol. 3 ›› Issue (1) :31 DOI: 10.1007/s44281-025-00085-4
Research Article
research-article

Genome-wide characterization of LTR retrotransposons provides new insights into missed gene annotation and gene expression effects in pear genomes

Author information +
History +
PDF

Abstract

Long terminal repeat retrotransposons (LTR-RTs) are crucial genomic elements that play a key role in shaping plant genome evolution and diversity. With the availability of high-quality genome sequences, an unprecedented opportunity has emerged to investigate LTR-RT dynamics in depth. This study presents a thorough analysis of LTR-RTs across six pear genomes. By integrating structure-based and homology-based approaches, this study identified 36,552 LTR-RTs, which included 18,302 complete LTR-RTs (50.07%), 13,793 solo LTRs (37.74%), 2,304 truncated LTR-RTs (6.30%), and 1,104 fragmented LTR-RTs (3.02%). These elements were classified into 1,075 distinct families, spanning four superfamilies: Copia (43 ± 6%), Gypsy (34 ± 7%), terminal repeat retrotransposons in miniature (TRIM) (13 ± 7%), and large retrotransposon derivatives (LARD) (10 ± 5%). The majority of LTR-RTs (64.16%) were inserted recently (0–0.5 Mya), with younger elements generally exhibiting higher copy numbers. Mapping results showed that 91.3% of complete LTR-RTs were successfully mapped to 17 chromosomes and were positively correlated with chromosome size (r = 0.851–0.976, P < 0.01). A total of 5,332 intact LTR-RTs (36.16%) were collinear across all six genomes, indicating insertions prior to species divergence. Over half of the LTR-RTs (54.65%) were located within genes or their flanking regions, with a strong preference for upstream (48.52%) and downstream (43.19%) regions over intragenic locations (6.37%). LTR-RT insertions significantly influenced gene expression in a manner specific to each variety. Furthermore, 5,217 previously unannotated genes interrupted by LTR-RTs were identified, of which 78.95% were functional, and 75% displayed active expression. This study provides comprehensive insights into the evolutionary dynamics and functional impact of LTR-RTs in pear genomes, enhancing our understanding of genome evolution and regulation in fruit crops.

Keywords

Pyrus genome / LTR retrotransposons / Collinear LTR-RTs / Transposition activity

Cite this article

Download citation ▾
Chao Wang, Yan Yan, Xuming Chen, Yunqi Zhang, Zewen Wang, Qionghou Li, Xin Qiao, Xiao Wu, Shaoling Zhang, Hao Yin. Genome-wide characterization of LTR retrotransposons provides new insights into missed gene annotation and gene expression effects in pear genomes. Horticulture Advances, 2025, 3(1): 31 DOI:10.1007/s44281-025-00085-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bennetzen JL. Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica, 2002, 115(1): 29-36

[2]

Bowers JE, Tang H, Burke JM, Paterson AH. GC content of plant genes is linked to past gene duplications. PLoS ONE, 2022, 17(1): e0261748

[3]

Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey, et al.. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell, 2012, 24(31242-55

[4]

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.. BLAST+: architecture and applications. BMC Bioinformatics, 2009, 10(1): 421

[5]

Campbell MS, Law M, Holt C, Stein JC, Moghe GD, Hufnagel DE, et al.. MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol, 2014, 164(2513-524

[6]

Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol, 2021, 38(12): 5825-5829

[7]

Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, et al.. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res, 2008, 18(1): 188-96

[8]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al.. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13(8): 1194-1202

[9]

Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet, 2017, 18(2): 71-86

[10]

Cook DE, Valle-Inclan JE, Pajoro A, Rovenich H, Thomma BPHJ, Faino L. Long-read annotation: automated eukaryotic genome annotation based on long-read cDNA sequencing. Plant Physiol, 2019, 179(1): 38-54

[11]

Domingues DS, Cruz GM, Metcalfe CJ, Nogueira FT, Vicentini R, de S Alves C, et al.. Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. BMC Genomics, 2012, 13 137

[12]

Domínguez M, Dugas E, Benchouaia M, Leduque B, Jiménez-Gómez JM, Colot V, et al.. The impact of transposable elements on tomato diversity. Nat Commun, 2020, 11(1): 4058

[13]

Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, et al.. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J, 2010, 63(4584-598

[14]

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 2004, 32(5): 1792-1797

[15]

Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet, 2008, 9(5): 397-405

[16]

González LG, Deyholos MK. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. BMC Genomics, 2012, 13(1): 644

[17]

Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res, 2006, 16(101252-1261

[18]

International Rice Genome Sequencing ProjectSasaki T. The map-based sequence of the rice genome. Nature, 2005, 436(7052): 793-800

[19]

Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, et al.. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449(7052): 463-467

[20]

Ji Y, DeWoody JA. Genomic landscape of long terminal repeat retrotransposons (LTR-RTs) and solo LTRs as shaped by ectopic recombination in chicken and zebra finch. J Mol Evol, 2016, 82(6): 251-263

[21]

Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH. Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics, 2004, 166(3): 1437-1450

[22]

Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, et al.. Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci U S A, 2008, 105(15): 5833-5838

[23]

Kimura M, Ota T. On the stochastic model for estimation of mutational distance between homologous proteins. J Mol Evol, 1972, 2(1): 87-90

[24]

Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon-induced mutations in grape skin color. Science, 2004, 304(5673): 982

[25]

Kuhn BC, Mangolin CA, Souto ER, Vicient CM, Machado MFPS . Development of retrotransposon-based markers IRAP and REMAP for cassava (Manihot esculenta). Genet Mol Res. 2016;15(2). https://doi.org/10.4238/gmr.15027149.

[26]

Kumar A, Bennetzen JL. Plant retrotransposons. Annu Rev Genet, 1999, 33: 479-532

[27]

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33(71870-1874

[28]

Li SF, She HB, Yang LL, Lan LN, Zhang XY, Wang LY, et al.. Impact of LTR-retrotransposons on genome structure, evolution, and function in Curcurbitaceae species. Int J Mol Sci, 2022, 23(17): 10158

[29]

Li Q, Qiao X, Li L, Gu C, Yin H, Qi K, et al.. Haplotype-resolved T2T genome assemblies and pangenome graph of pear reveal diverse patterns of allele-specific expression and the genomic basis of fruit quality traits. Plant Commun, 2024, 5(10101000

[30]

Liang Y, Lenz R, Dai W. Development of retrotransposon-based molecular markers and their application in genetic mapping in chokecherry (Prunus virginiana L.). Mol Breed. 2016;36. https://doi.org/10.1007/s11032-016-0535-2.

[31]

Liu Y, Tahir ul Qamar M, Feng JW, Ding Y, Wang S, Wu G, et al.. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species. BMC Plant Biol, 2019, 19(1140

[32]

Lo EYY, Donoghue MJ. Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae). Mol Phylogenet Evol, 2012, 63(2230-243

[33]

Lockton S, Gaut BS. The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana. J Mol Evol, 2009, 68(1): 80-89

[34]

Ma J, Bennetzen JL. Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci U S A, 2006, 103(2): 383-388

[35]

Mariño-Ramírez L, Lewis KC, Landsman D, Jordan IK. Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet Genome Res, 2005, 110(1–4): 333-341

[36]

Mascagni F, Giordani T, Ceccarelli M, Cavallini A, Natali L. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.). BMC Genomics, 2017, 18(1): 634

[37]

Meng Y, Su W, Ma Y, Liu L, Gu X, Wu D, et al.. Assessment of genetic diversity and variety identification based on developed retrotransposon-based insertion polymorphism (RBIP) markers in sweet potato (Ipomoea batatas (L.) Lam.). Sci Rep, 2021, 11(117116

[38]

Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, et al.. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452(7190991-996

[39]

Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet, 2005, 37(9): 997-1002

[40]

NCBI Sequence Read Archive (SRA). National Center for Biotechnology Information, Bethesda. 2023. https://www.ncbi.nlm.nih.gov/sra. Accessed 20 Jul 2023.

[41]

Ni F, Qi J, Hao Q, Lyu B, Luo MC, Wang Y, et al.. Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nat Commun, 2017, 8: 15121

[42]

Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, et al.. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol, 2019, 20(1): 275

[43]

Ou-yang Z, Wang Y, Ma T, Kanzana G, Wu F, Zhang J. Genome-wide identification and development of LTR retrotransposon-based molecular markers for the Melilotus genus. Plants, 2021, 10(5890

[44]

Pear Multiomics Database. Nanjing Agricultural University, Nanjing. 2023. http://pearomics.njau.edu.cn/. Accessed 6 Oct 2023.

[45]

Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, et al.. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res, 2006, 16(101262-1269

[46]

Queen RA, Gribbon BM, James C, Jack P, Flavell AJ. Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics, 2004, 271(191-97

[47]

SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, et al.. Nested retrotransposons in the intergenic regions of the maize genome. Science, 1996, 274(5288): 765-768

[48]

SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet, 1998, 20(1): 43-45

[49]

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al.. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(7278): 178-183

[50]

Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al.. The b73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112-1115

[51]

Shapiro JA. Retrotransposons and regulatory suites. BioEssays, 2005, 27(2): 122-125

[52]

Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res, 2005, 33(Web Server issue): W465-7

[53]

Steinbiss S, Willhoeft U, Gremme G, Kurtz S. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res, 2009, 37(21): 7002-7013

[54]

Teng Y, Tanabe K. Reconsideration on the origin of cultivated pears native to East Asia. Acta Hortic, 2004, 634: 175-82

[55]

The International Peach Genome InitiativeVerde I, Abbott AG, Scalabrin S, Jung S, Shu S, et al.. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet, 2013, 45(5): 487-494

[56]

Vangelisti A, Simoni S, Usai G, Ventimiglia M, Natali L, Cavallini A, et al.. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. BMC Plant Biol, 2021, 21(1 221

[57]

Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al.. The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet, 2010, 42(10): 833-839

[58]

Venturini L, Caim S, Kaithakottil GG, Mapleson DL, Swarbreck D. Leveraging multiple transcriptome assembly methods for improved gene structure annotation. Gigascience, 2018, 7(8): giy093

[59]

Wang H, Liu JS. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genomics, 2008, 9(1382

[60]

Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al.. MCscanx: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40(7 e49

[61]

Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al.. A unified classification system for eukaryotic transposable elements. Nat Rev Genet, 2007, 8(12973-982

[62]

Witte C-P, Le QH, Bureau T, Kumar A. Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A, 2001, 98(24): 13778-13783

[63]

Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, et al.. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res, 2013, 23(2): 396-408

[64]

Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, et al.. The draft genome of sweet orange (Citrus sinensis). Nat Genet, 2013, 45(1): 59-66

[65]

Yadav CB, Bonthala VS, Muthamilarasan M, Pandey G, Khan Y, Prasad M. Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database. DNA Res, 2015, 22(1): 79-90

[66]

Yang LL, Zhang XY, Wang LY, Li YG, Li XT, Yang Y, et al.. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species. BMC Genomics, 2023, 24(1): 423

[67]

Yin H, Du J, Li L, Jin C, Fan L, Li M, et al.. Comparative genomic analysis reveals multiple long terminal repeats, lineage-specific amplification, and frequent interelement recombination for Cassandra retrotransposon in pear (Pyrus bretschneideri Rehd.). Genome Biol Evol, 2014, 6(61423-1436

[68]

Yin H, Du J, Wu J, Wei S, Xu Y, Tao S, et al.. Genome-wide annotation and comparative analysis of long terminal repeat retrotransposons between pear species of P. bretschneideri and P. communis. Sci Rep, 2015, 5: 17644

[69]

Yu GX, Wise RP. An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome, 2000, 43(5): 736-749

[70]

Zhou Y, Minio A, Massonnet M, Solares E, Lv Y, Beridze T, et al.. The population genetics of structural variants in grapevine domestication. Nat Plants, 2019, 5(9965-979

Funding

Nanjing Agricultural University

RIGHTS & PERMISSIONS

The Author(s)

PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

/