Nodal culture for efficient regeneration and CRISPR/Cas-based genome editing in recalcitrant horticultural crops

Himanshu Pandey , Varucha Misra , Avinash Sharma , Basistha Chatterjee , Monoj Sutradhar , Rajeev Kumar , Punabati Heisnam , V. S. Devadas , Ashutosh Kumar Mall , Nimisha Tehri , Amit Vashishth

Horticulture Advances ›› 2025, Vol. 3 ›› Issue (1) : 28

PDF
Horticulture Advances ›› 2025, Vol. 3 ›› Issue (1) : 28 DOI: 10.1007/s44281-025-00080-9
Review
review-article

Nodal culture for efficient regeneration and CRISPR/Cas-based genome editing in recalcitrant horticultural crops

Author information +
History +
PDF

Abstract

Nodal culture is a powerful plant tissue culture technique addressing critical challenges such as desiccation, microbial contamination, and the limited viability of explants, particularly in recalcitrant horticultural crops like Garcinia mangostana, Artocarpus heterophyllus, Cucumis melo, Citrus limon, Kinnow mandarin, and Coffea arabica. This method utilizes sterilized immature nodal explants, with regeneration induced through the precise application of growth regulators, primarily auxins and cytokinins, to media such as Driver-Kuniyuki (DKW), Woody Plant Media (WPM), and Murashige and Skoog (MS) under controlled conditions. These regulators significantly enhance both shoot and root regeneration, thus reducing the generation time for difficult-to-regenerate species. Reactive oxygen species (ROS) play a pivotal role in regulating cell division and hormone signaling during regeneration. Additionally, transcription factors such as wound-induced dedifferentiation 1 (WIND1), WUSCHEL (WUS), Enhancer of Shoot Regeneration 1 (ESR1), Cup-shaped Cotyledon 1 and 2 (CUC1, CUC2), and Lateral Organ Boundaries Domain 16 (LBD16) are integral to callus induction and organogenesis. Genetic variation observed in regenerated populations reflects the complexity of these regulatory networks and underscores the need for further investigation. Notably, nodal culture provides a promising alternative to conventional tissue culture methods, particularly in facilitating CRISPR/Cas9-mediated genetic modifications in recalcitrant crops. This technique enhances the efficient regeneration of transgenic horticultural crops, overcoming significant barriers to transformation. Future research should focus on refining nodal culture protocols across a broader spectrum of horticultural species, improving gene editing efficiency, and integrating this approach with advanced breeding technologies for targeted trait development and sustainable crop improvement.

Keywords

Nodal culture / Recalcitrant horticultural plant / Genetic transformation / Regeneration / Speed breeding / Abiotic/Biotic stress

Cite this article

Download citation ▾
Himanshu Pandey, Varucha Misra, Avinash Sharma, Basistha Chatterjee, Monoj Sutradhar, Rajeev Kumar, Punabati Heisnam, V. S. Devadas, Ashutosh Kumar Mall, Nimisha Tehri, Amit Vashishth. Nodal culture for efficient regeneration and CRISPR/Cas-based genome editing in recalcitrant horticultural crops. Horticulture Advances, 2025, 3(1): 28 DOI:10.1007/s44281-025-00080-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdalla N, El-Ramady H, Seliem MK, El-Mahrouk ME, Taha N, Bayoumi Y. et al.. An academic and technical overview on plant micropropagation challenges. Horticulturae, 2022, 8: 677.

[2]

Ahmad M. Plant breeding advancements with “CRISPR-Cas” genome editing technologies will assist future food security. Front Plant Sci, 2023, 14: 1133036.

[3]

Ahsan SM, Injamum-Ul-Hoque M, Das AK, Shaffique S, Hasan M, Kang SM. et al.. Tuning up invitro growth and development of cannabis sativa: recent advances in micropropagational approach. Appl Biosci, 2025, 4(1. 12

[4]

Akhatar J, Kaur H, Kumar H. Conventional plant breeding to modern biotechnological approaches in crop improvement. In: Kamaluddin, Kiran U, Abdin MZ, editors. Technologies in: plant biotechnology and breeding of field crops. Singapore: Springer Nature; 2022. p. 1–21. https://doi.org/10.1007/978-981-16-5767-2_1.

[5]

Altaf MT, Liaqat W, Ali A, Jamil A, Bedir M, Nadeem MA, et al. Conventional and biotechnological approaches for the improvement of industrial crops. In: Kumar N, editor. Industrial Crop Plants. Singapore: Springer; 2024.p. 1–48. https://doi.org/10.1007/978-981-97-1003-4_1.

[6]

Amin MN, Ahmad S, Sultana S, Alam MR, Azad MAK. In vitro rapid clonal propagation of an ornamental plant-Ixora fulgens Roxb. J Biol Sci, 2002, 2(7): 485.

[7]

Antwi-Wiredu A, Amiteye S, Diawuoh RG, Asumeng AK, Klu GY. In vitro propagation of rubber tree (Hevea brasiliensis) using shoot-tip and nodal cutting explants. Int J Adv Struct Eng. 2018;4(6):38–50. https://doi.org/10.31695/IJASRE.2018.32743.

[8]

AV MM, Karishma NA. Development of micropropagation protocol for jackfruit (Artocarpus heterophyllus Lam.) KJ 182. J Trop Agric. 2024;62(1):10–13.

[9]

Azam FMS, Rahmatullah M. Tissue culture of Artocarpus heterophyllus L., an underutilized fruit of Bangladesh. Acta Hortic. 2009;269–76.

[10]

Babu GA, Mosa Christas K, Kowsalya E, Ramesh M, Sohn SI, Pandian S. Improved sterilization techniques for successful invitro micropropagation. In: Gupta S, Chaturvedi P, editors. Commercial Scale Tissue Culture for Horticulture and Plantation Crops. Singapore: Springer Nature; 2022.p. 1–21. https://doi.org/10.1007/978-981-19-0055-6_1.

[11]

Barbedo CJ, Centeno DDC, Ribeiro RDCLF. Do recalcitrant seeds really exist?. Hoehnea, 2013, 40(4): 583-593.

[12]

Belanger JG, Copley TR, Hoyos-Villegas V, Charron JB, O’Donoughue L. A comprehensive review of in planta stable transformation strategies. Plant Methods, 2024, 20(1): 79.

[13]

Bennur PL, O’Brien M, Fernando SC, Doblin MS. Improving transformation and regeneration efficiency in medicinal crops: Insights from other recalcitrant species. J Exp Bot, 2025, 76(1): 52-75.

[14]

Berjak P, Pammenter NW. Physiology of desiccation-sensitive (Recalcitrant) seeds and the implications for cryopreservation. Int J Plant Sci, 2004, 175: 305-345.

[15]

Bhattacharyya R, Ghosh BN, Mishra PK, Mandal B, Rao CS, Sarkar D. et al.. Soil degradation in India: challenges and potential solutions. Sustainability, 2015, 7(4): 3528-3570.

[16]

Bidabadi SS, Jain SM. Cellular, molecular, and physiological aspects of invitro plant regeneration. Plants, 2020, 9(6): 702.

[17]

Boboc Oros P, Cantor M, Cordea MI, Cătană C. Plant regeneration protocol for recalcitrant passion flower (Passiflora quadrangularis L.). Horticulturae, 2022, 8(4. 337

[18]

Cardoso JC, deOliveira MEB, deCardoso FC. Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Hortic Bras, 2019, 37(2): 124-132.

[19]

Chang W, Guo Y, Zhang H, Liu X, Guo L. Same actor in different stages: genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Front Ecol Evol, 2020, 8: 1-12.

[20]

Chatfield SP, Capron R, Severino A, Penttila PA, Alfred S, Nahal H. et al.. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in wuschel-dependent conversion of lateral root primordia into shoot meristems. Plant J, 2013, 73(5): 798-813.

[21]

Chatterjee A, Purkaystha S, Bhattacharyya S, Sen P . Genetic engineering and genome editing for enhancing nutritional quality. In: Mathur P, Gupta A, editors. Recent trends and applications of leguminous microgreens as Functional Foods. Switzerland: Springer 2025;389–419. https://doi.org/10.1007/978-3-031-75678-8.

[22]

Che P, Lall S, Nettelton D, Howell SH. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol, 2006, 141(2): 620-637.

[23]

Coggins CWJr, Lovatt CJGrafton-Cardwell B. Plant growth regulators. Citrus production manual, 2014OaklandUniversity of California Agriculture and Natural Resources215

[24]

da Silva TL, Balzon TA, Scherwinski-Pereira JE. A rapid in vitro protocol for propagation of Piper aduncum and Piper hispidinervum, two species from Amazon region with multipurpose uses. Afr J Biotechnol., 2012, 11(89): 15539-15546.

[25]

Elhiti M, Stasolla C. ROS signalling in plant embryogenesis. In: Gupta KJ, Igamberdiev AU, editors. Reactive oxygen and nitrogen species signaling and communication in crops. Switzerland: Springer; 2014. p. 197–214. https://doi.org/10.1007/978-3-319-10079-1.

[26]

Eziashi EI, Asemota O, Okwuagwu CO, Eke CR, Chidi NI, Oruade-Dimaro EA. et al.. Screening sterilizing agents and antibiotics for the elimination of bacterial contaminants from oil palm explants for plant tissue culture. Eur J Exp Biol, 2014, 4(4): 111-115

[27]

Faizan M, Hayat S, Ahmed SMReactive oxygen species: prospects in plant metabolism, 2023SingaporeSpringer Nature.

[28]

Fambrini M, Usai G, Pugliesi C. Induction of somatic embryogenesis in crops: different players and focus on wuschel and wus-related homeobox (wox) transcription factors. Int J Mol Sci, 2022, 23(24): 15950.

[29]

Fan Y, Tang Z, Wei J, Yu X, Guo H, Li T. et al.. Dynamic transcriptome analysis reveals complex regulatory pathway underlying induction and dose effect by different exogenous auxin IAA and 2, 4-d during invitro embryogenic redifferentiation in cotton. Front Plant Sci, 2022, 13. 931105

[30]

Fernandez A, Leon-Lobos P, Contreras S, Ovalle JF, Sershen, Walt KVD, et al. The potential impacts of climate change on ex situ conservation options for recalcitrant-seeded species. Front For Glob Change. 2023;6:1110431. https://doi.org/10.3389/ffgc.2023.1110431.

[31]

Fu J, Liao L, Jin J, Lu Z, Sun J, Song L. et al.. A transcriptional cascade involving bbx22 and hy5 finely regulates both plant height and fruit pigmentation in citrus. J Integr Plant Biol, 2024, 66(8): 1752-1768.

[32]

Gebremariam E. Invitro propagation of Coffea arabica cv. MCH2 using nodal explants. J Nat Sci Res. 2017;7(1):17–21.

[33]

Goh T, Joi S, Mimura T, Fukaki H. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development, 2012, 139(5): 883-893.

[34]

Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 2007, 134(19): 3539-3548.

[35]

Goswami K, Sharma R, Singh PK, Singh G. Micropropagation of seedless lemon (Citrus limon L. cv. Kaghzi Kalan) and assessment of genetic fidelity of micropropagated plants using RAPD markers. Physiol Mol Biol Plants, 2013, 19: 137-145.

[36]

Guerriero G, Berni R, Muñoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA. et al.. Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes, 2018, 9(6. 309

[37]

Gunson HE, Spencer-Phillips PTN. Latent bacterial infections: epiphytes and endophytes as contaminants of micropropagated crops. In: Lumsden PJ, Nicholas JR, Davies WJ, editors. Physiology, growth and development of crops in culture. Dordrecht: Springer; 1994. p. 379–96. https://doi.org/10.1007/978-94-011-0790-7_43.

[38]

Hill K, Schaller GE. Enhancing plant regeneration in tissue culture. Plant Signal Behav, 2013, 8(10. e25709

[39]

Hiti-Bandaralage JC, Hayward A, Mitter N. Micropropagation of avocado (Persea americana Mill.). Am J Plant Sci. 2017;11:2898–921. https://doi.org/10.4236/ajps.2017.811197.

[40]

Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP. Histidine kinases: diverse functions in plant development and responses to environmental conditions. Annu Rev Plant Biol, 2021, 72: 297-323.

[41]

Hu B, Zhang G, Liu W, Shi J, Wang H, Qi M. et al.. Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration, 2017, 4(3): 132-139.

[42]

Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K. Plant regeneration: cellular origins and molecular mechanisms. Development, 2016, 143(9): 1442-1451.

[43]

Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B. et al.. Molecular mechanisms of plant regeneration. Annu Rev Plant Biol, 2019, 70: 377-406.

[44]

Isah T, Umar S, Mujib A, Sharma MP, Rajasekharan PE, Zafar N. et al.. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell, Tissue and Organ Culture (PCTOC), 2018, 132: 239-265.

[45]

Isda MN, Hasibuan M, Fatonah S. The formation of shoots in mangosteen (Garcinia Mangostana L.) nodules from Bengkalis, Riau in Murashige Skoog and woody plant medium. J Phys Conf Ser. 2019;1351:12–28. https://doi.org/10.1088/1742-6596/1351/1/012028.

[46]

Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T. et al.. The Ap2/erf transcription factor Wind1 controls cell dedifferentiation in Arabidopsis. Curr Biol, 2011, 21(6): 508-514.

[47]

Iwase A, Mita K, Nonaka S, Ikeuchi M, Koizuka C, Ohnuma M. et al.. Wind1-based acquisition of regeneration competency in Arabidopsis and rapeseed. J Plant Res, 2015, 128: 389-397.

[48]

Jain S, Singh H, Rathod M, Meena R, Deshmukh RN, Mohapatra A. et al.. Preserving for the future: the critical role of germplasm conservation in fruit crop resilience. Int J Environ Clim Change, 2023, 13(11): 4651-4661.

[49]

Jia H, Zou X, Orbovic V, Wang N. Genome editing in citrus tree with CRISPR/Cas9. Plant genome editing with CRISPR systems: Methods and Protocols. 2019;235-241. https://doi.org/10.1111/pbi.13132.

[50]

Jose S, Thomas TD. Abiotic stresses increase plant regeneration ability of rhizome explants of Curcuma caesia Roxb. Plant Cell Tissue Organ Cult, 2015, 122: 767-772.

[51]

Kareem A, Durgaprasad K, Sugimoto K, Du Y, Pulianmackal AJ, Trivedi ZB. et al.. Plethora genes control regeneration by a two-step mechanism. Curr Biol, 2015, 25(8): 1017-1030.

[52]

Kelly G, Plesser E, Bdolach E, Arroyvve M, Belausov E, Doron-Faigenboim A. et al.. In plant genome editing in citrus facilitated by co-expression of CRISPR/Cas and developmental regulators. Plant J, 2025, 122(2. e70155

[53]

Kim DH, Gopal J, Sivanesan I. Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv, 2017, 7(58): 36492-36505.

[54]

Kirch T, Simon R, Grünewald M, Werr W. The dornroschen/Enhancer of shootregeneration1 gene of arabidopsis acts in the control of meristem cell fate and lateral organ development. Plant Cell, 2003, 15(3): 694-705.

[55]

Kwiatkowska D. Flowering and apical meristem growth dynamics. J Exp Bot, 2008, 59(2): 187-201.

[56]

Laksana C, Sophiphun O, Chanprame S. Lignin reduction in sugarcane by performing CRISPR/Cas9 site-direct mutation of SoLIM transcription factor. Plant Sci, 2024, 340. 111987

[57]

Lal R, Smith P, Jungkunst HF, Mitsch WJ, Lehmann J, Nair PR. et al.. The carbon sequestration potential of terrestrial ecosystems. J Soil Water Conserv, 2018, 73(6): 145A-152A.

[58]

Lardon R, Geelen D. Natural variation in plant pluripotency and regeneration. Plants, 2020, 9(10): 1261.

[59]

Lee JS. To overcome the limitations of fixed life patterns, crops can generate meristems throughout life. J Plant Physiol, 2023, 291. 154097

[60]

Li J, Zhang Q, Wang Z, Liu Q. et al.. The roles of epigenetic regulators in plant regeneration: exploring patterns amidst complex conditions. Plant Physiol, 2024, 194: 2022-2038.

[61]

Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H. et al.. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell, 2014, 26(3): 1081-1093.

[62]

Lone SM, Hussain K, Malik A, Magray M, Hussain SM, Rashid M. et al.. Plant propagation through tissue culture-a biotechnological intervention. Int J Curr Microbiol App Sci, 2020, 9(7): 2176-2190.

[63]

Long Y, Yang Y, Pan G, Shen Y. New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci, 2022, 13. 926752

[64]

Luo Z, Xu X, Sho T, Zhang J, Xu W, Yao J. et al.. ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation. Am J Physiol Cell Physiol, 2019, 316(2): C198-C209.

[65]

Mahmad N. Germination, regeneration and pigment detection in Nelumbo nucifera gaertn. (pink Asian lotus)[Doctoral dissertation]. Kuala Lumpur: Institute of Biological Sciences, University of Malaya; 2012. p. 1–404.

[66]

Majumder A, Roychowdhury D, Ray S. Biotechnological approaches for ex situ conservation of medicinal crops. In: Jha S, Halder M, editors. Medicinal Plants: biodiversity, biotechnology and conservation. Singapore: Springer; 2023. p. 729–800. https://doi.org/10.1007/978-981-19-9936-9_26.

[67]

Mazri MA, Koufan M, Abdelwahd R, Belkoura I. In vitro responses of some Mediterranean fruit crops to auxin, cytokinin and gibberellin treatments. In: Aftab T, editor. Auxins, cytokinins and gibberellins signaling in crops. Singapore: Springer; 2022. p. 91–123. https://doi.org/10.1007/978-3-031-05427-3_5..

[68]

Mishra A, Pandey VP. CRISPR/Cas system: a revolutionary tool for crop improvement. Biotechnol J, 2024, 19(2. 2300298

[69]

Monthony AS, Bagheri S, Zheng Y, Jones AMPWeeding out challenges in cannabis tissue culture and developing novel micropropagation and regeneration methods [Doctoral dissertation], 2021GuelphUniversity of Guelph1-143

[70]

Mosoh DA, Khandel AK, Verma SK, Vendrame WA. Multi-explant and multiplex applications of plant growth regulators: A critical analysis of direct organogenesis in Gloriosa superba (L.). Tropical Plants, 2024, 3. e039

[71]

Motte H, Vercauteren A, Depuydt S, Landschoot S, Geelen D, Werbrouck S. et al.. Combining linkage and association mapping identifies receptor-like protein kinase1 as an essential Arabidopsis shoot regeneration gene. Proc Natl Acad Sci U S A, 2014, 111(22): 8305-8310.

[72]

Nair DN, Padmavathy S. Impact of endophytic microorganisms on crops, environment and humans. Sci World J, 2014, 2014(1. 250693

[73]

Ochatt SJ. Less frequently used growth regulators in plant tissue culture. In: Loyola-Vargas V, Ochoa-Alejo N, editors. Plant cell culture protocols. New York: Springer; 2024. p. 109–143. https://doi.org/10.1007/978-1-0716-3954-2_8.

[74]

Oyebamiji YO, Adigun BA, Shamsudin NAA, Ikmal AM, Salisu MA, Malike FA. et al.. Recent advancements in mitigating abiotic stresses in crops. Horticulturae, 2024, 10(2): 156.

[75]

Parvin S, Kausar M, Haque ME, Khalekuzzaman M, Sikdar B, Islam MA. In vitro propagation of muskmelon (Cucumis melo L.) from nodal segments, shoot tips and cotyledonary nodes. Rajshahi Univ J Life Earth Agricl Sci. 2013;41:71–7. https://doi.org/10.3329/rujleas.v41i0.21627.

[76]

Pasternak TP, Steinmacher D. Plant growth regulation in cell and tissue culture in vitro. Plants, 2024, 13(2. 327

[77]

Patel P, Sarswat SK, Modi A. Strategies to overcome explant recalcitrance under in vitro conditions. In: Rai AC, Kumar A, Modi A, Singh M, editors. Advances in plant tissue culture. Cambridge: Academic Press; 2022. p. 283–94. https://doi.org/10.1016/B978-0-323-90795-8.00003-5.

[78]

Perera D, Barnes DJ, Baldwin BS, Reichert NA. Direct and indirect in vitro regeneration of Miscanthus × giganteus cultivar Freedom: effects of explant type and medium on regeneration efficiency. In Vitro Cell Dev Biol Plant, 2015, 51: 294-302.

[79]

Pérez-Tornero O, Tallón CI, Porras I. An efficient protocol for micropropagation of lemon (Citrus limon) from mature nodal segments. Plant Cell Tissue Organ Cult, 2010, 100: 263-271.

[80]

Potts J, Jangra S, Michael VN, Wu X. Speed breeding for crop improvement and food security. Crops, 2023, 3(4): 276-291.

[81]

Pritchard HW, Tsan FY, Wen B, Jaganathan GK, Calvi G, Pence VC, et al. Regeneration in recalcitrant-seeded species and risks from climate change. In: Baskin CC, Baskin JM, editors. Plant regeneration from seeds: a global warming perspective. Cambridge: Academic Press; 2022. p. 259–73. https://doi.org/10.1016/C2020-0-00735-8.

[82]

Puijalon S, Piola F, Bornette G. Abiotic stresses increase plant regeneration ability. Evol Ecol, 2008, 22: 493-506.

[83]

Pumisutapon P, Visser RGF, de Klerk GJ. Moderate abiotic stresses increase rhizome growth and outgrowth of axillary buds in Alstroemeria cultured in vitro. Plant Cell Tissue Organ Cult, 2012, 110: 395-400.

[84]

Rai GK, Khanday DM, Kumar P, Magotra I, Choudhary SM, Kosser R. et al.. Enhancing crop resilience to drought stress through CRISPR-Cas9 genome editing. Plants, 2023, 12(12): 2306.

[85]

Ramos LCDS, Almeida JASD. Effect of 6-BA on nodal explant bud sproutings of Coffea arabica cv. Mundo Novo. Bragantia, 2005, 64(2): 185-190.

[86]

Rasheed H, Shi L, Winarsih C, Jakada BH, Chai R, Huang H. Plant growth regulators: an overview of wox gene family. Plants, 2024, 13(21): 3108.

[87]

Ravindran PN, Nirmal Babu K, Shiva KN. Botany and crop improvement of turmeric. In: Ravindran PN, Nirmal Babu K, Sivaraman K, editors. Turmeric: the genus Curcuma. London: CRC Press; 2007. p. 15–70. https://doi.org/10.1201/9781420006322.

[88]

Ricroch A, Dervishi A, Choudry MW, Riaz R, Bakhsh A. A roadmap for plant genome editing, Springer, Singapore; 2024. p. 259–69. https://library.oapen.org/handle/20.500.12657/86933.

[89]

Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science, 1999, 283(5407): 1541-1544.

[90]

Roy SK, Roy PK, Sinha P, Haque MS. Mass clonal propagation of Artocarpus Heterophyllus through in vitro culture. In: Kubota C, Chun C, editors. Transplant production in the 21st century. Dordrecht: Springer; 2000. p. 219–25. https://doi.org/10.1007/978-94-015-9371-7_36.

[91]

Rupp HM, Frank M, Werner T, Strnad M, Schmuelling T. Increased steady state mRNA levels of the stm and knat1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J, 1999, 18(5): 557-563.

[92]

Salonia F, Ciacciulli A, Pappalardo HD, Poles L, Pindo M, Larger S. et al.. A dual sgRNA-directed CRISPR/Cas9 construct for editing the fruit-specific β-cyclase 2 gene in pigmented citrus fruits. Front Plant Sci, 2022, 13. 975917

[93]

Sehgal H, Joshi M. The journey and new breakthroughs of plant growth regulators in tissue culture. In: Rai AC, Kumar A, Modi A, Singh M, editors. Advances in plant tissue culture. Cambridge: Academic Press; 2022. p. 85–108. https://doi.org/10.1016/B978-0-323-90795-8.00002-3.

[94]

Shields R, Robinson S, Anslow PA. Use of fungicides in plant tissue culture. Plant Cell Rep. 1984;3:33–6. https://doi.org/10.1007/BF00270226.

[95]

Sholi N, Qasrawi H. In vitro regeneration of avocado (Persea americana) west indian rootstock cv. lula via tissue culture. مجلة جامعة فلسطين التقنية للأبحاث. 2022;10(1):11–21.

[96]

Silveira SS, Cordeiro-Silva R, Degenhardt-Goldbach J, Quoirin M. Micropropagation of Calophyllum brasiliense (Cambess.) from nodal segments. Braz J Biol, 2016, 76(3): 656-663.

[97]

Singh M, Sonkusale S, Niratker CH, Shukla P. Micropropagation of Shorea robusta: an economically important woody plant. J for Sci, 2014, 60(2): 70-74.

[98]

Singh P, Singh BK, Singh SP, Padhi M. Micropropagation of Kinnow mandarin using nodal segments as explants. J Pharmacogn Phytochem, 2018, 7(4): 2224-2226

[99]

Sivakumar P, Pavithra N, Ballolla T, Vineeta ME, Selvaraj KV, Logeswaran J. Effect of growth regulators in invitro propagation of Ixora spp.: an short review. J Curr Opin Crop Sci. 2020;1(1):31–4. https://doi.org/10.62773/jcocs.v1i1.15.

[100]

Sujith SS. In vitro techniques for conservation of recalcitrant species [Master’s Seminar]. Thrissur: Centre for plant biotechnology and molecular biology, College of Horticulture, Kerala Agricultural University; 2015. p. 1–35.

[101]

To JP, Haberer G, Ferreira FJ, Deruère J, Mason MG, Schaller GE. et al.. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 2014, 16(3): 658-671.

[102]

Traore A, Maximova SN, Guiltinan MJ. Micropropagation of Theobroma cacao L. using somatic embryo-derived plants. In Vitro Cellular & Developmental Biology-Plant. 2003;39(3):332–7. https://doi.org/10.1079/IVP2002409.

[103]

Wang S, Zhao S, Du M, Mo K, Pang S, Zou X. Development and application of gene editing in citrus: how and what to do. Hortic Adv, 2024, 2. 31

[104]

Yang Q, Yuan C, Cong T, Zhang Q. The secrets of meristems initiation: axillary meristem initiation and floral meristem initiation. Plants, 2023, 12(9): 1879.

[105]

Zeng M, Hu B, Li J, Zhang G, Ruan Y, Huang H. et al.. Stem cell lineage in body layer specialization and vascular patterning of rice root and leaf. Sci Bull, 2016, 61(11): 847-858.

[106]

Zhai N, Xu L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat Plants, 2021, 7: 1453-1460.

[107]

Zhang S, Lemaux PG. Molecular analysis of in vitro shoot organogenesis. CRC Crit Rev Plant Sci, 2004, 23(4): 325-335.

[108]

Zhang L, Yang X. Advances in sugarcane genomics: navigating through complex polyploid genomes. Mol Plant Breed, 2024, 15(4): 155-166.

[109]

Zhu C, Zheng X, Huang Y, Ye J, Chen P, Zhang C. et al.. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering mini-citrus (Fortunella hindsii). Plant Biotechnol J, 2019, 17(11): 2199-2210.

[110]

Zhumanova N, Akimbayeva N, Myrzakhmetova N, Dzhiembaev B, Ku A, Diyarova B, et al. A comprehensive review of new generation plant growth regulators. ES Food & Agrofor. 2024;17:1190. https://doi.org/10.30919/esfaf1190.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/