PDF
Abstract
Metabolomics, a rapidly evolving field, has revolutionized horticultural crop research by enabling comprehensive analysis of metabolites that influence plant yield, growth, quality and nutritional value. The integration of web-based resources, including databases, computational tools and analytical platforms has significantly enhanced metabolomics studies by facilitating data processing, metabolite identification and pathway analysis. Moreover, the application of machine learning algorithms to these web resources has further optimized data interpretation, enabling more accurate prediction of metabolic profiles. Publicly available reference libraries and bioinformatic tools support precision of breeding, postharvest quality assessment and ultimately improving crop yield and sustainability. In this mini-review, we explore the current status of the diverse range of plant metabolomics databases in horticultural crops, highlighting the synergy between machine learning and traditional bioinformatics methods, their applications, challenges and future prospects in advancing plant science and agricultural innovation.
Keywords
Metabolite databases
/
Bioinformatic tools
/
Plant metabolomics and horticultural crops
Cite this article
Download citation ▾
Esra Karakas, Mustafa Bulut, Alisdair R. Fernie.
The use of web resources for metabolomics in horticultural crops.
Horticulture Advances, 2025, 3(1): 18 DOI:10.1007/s44281-025-00073-8
| [1] |
AfendiFM, OkadaT, YamazakiM, Hirai-MoritaA, NakamuraY, NakamuraK, et al.. KNApSAcK family databases:integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol, 2012, 53: e1
|
| [2] |
AharoniA, GoodacreR, FernieAR. Plant and microbial sciences as key drivers in the development of metabolomics research. Proc Natl Acad Sci U S A, 2023, 120: e2217383120
|
| [3] |
AlseekhS, ScossaF, WenW, LuoJ, YanJ, BeleggiaR, et al.. Domestication of crop metabolomes: desired and unintended consequences. Trends Plant Sci, 2021, 26: 650-661
|
| [4] |
Ara T, Sakurai N, Takahashi S, Waki N, Suganuma H, Aizawa K, et al. TOMATOMET: A metabolome database consists of 7118 accurate mass values detected in mature fruits of 25 tomato cultivars. 2021;5:e00318. https://doi.org/10.1002/pld3.318 .
|
| [5] |
ArkinAP, CottinghamRW, HenryCS, HarrisNL, StevensRL, MaslovS, et al.. KBase: the united states department of energy systems biology knowledgebase. Nat Biotechnol, 2018, 36: 566-569
|
| [6] |
BeleggiaR, RauD, LaidòG, PlataniC, NigroF, FragassoM, et al.. Evolutionary metabolomics reveals domestication-associated changes in tetraploid wheat kernels. Mol Biol Evol, 2016, 33: 1740-1753
|
| [7] |
BroecklingCD, AfsarFA, NeumannS, Ben-HurA, PrenniJE. RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal Chem, 2014, 86: 6812-6817
|
| [8] |
Bueschl C, Kluger B, Neumann NKN, Doppler M, Maschietto V, Thallinger GG, et al. MetExtract II: a software suite for stable isotope-assisted untargeted metabolomics. Anal Chem. 2017;89:9518–26. https://doi.org/10.1021/acs.analchem.7b02518 .
|
| [9] |
Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, et al. The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res. 2020;48:D445–53. https://doi.org/10.1093/nar/gkz862 .
|
| [10] |
ChetnikK, PetrickL, PandeyG. MetaClean: a machine learning-based classifier for reduced false positive peak detection in untargeted LC–MS metabolomics data. Metabolomics, 2020, 16: 117
|
| [11] |
ConroyMJ, AndrewsRM, AndrewsS, CockayneL, DennisEA, FahyE, et al.. LIPID MAPS: update to databases and tools for the lipidomics community. Nucleic Acids Res, 2024, 52: D1677-D1682
|
| [12] |
DalyR, RogersS, WandyJ, JankevicsA, BurgessKE, BreitlingR. MetAssign: probabilistic annotation of metabolites from LC–MS data using a bayesian clustering approach. Bioinformatics, 2014, 30: 2764-2771
|
| [13] |
Davey MP, Burrell MM, Woodward FI, Quick WP. Population-specific metabolic phenotypes of Arabidopsis lyrata ssp. petraea. New Phytol. 2008;177:380–8. https://doi.org/10.1111/j.1469-8137.2007.02282.x
|
| [14] |
de JongeNF, LouwenJJR, ChekmenevaE, CamuzeauxS, VermeirFJ, JansenRS, et al.. MS2Query: reliable and scalable MS2 mass spectra-based analogue search. Nat Commun, 2023, 14: 1752
|
| [15] |
De VosRC, MocoS, LommenA, KeurentjesJJ, BinoRJ, HallRD. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc, 2007, 2: 778-791
|
| [16] |
van Dijk ADJ, Kootstra G, Kruijer W, de Ridder D. Machine learning in plant science and plant breeding. iScience, 2020;24:101890.. https://doi.org/10.1016/j.isci.2020.101890
|
| [17] |
DuX, DobrowolskiA, BrochhausenM, GarrettTJ, HoganWR, LemasDJ. Nextflow4MS-DIAL: a reproducible nextflow-based workflow for liquid chromatography–mass spectrometry metabolomics data processing. J Am Soc Mass Spectrom, 2025, 36: 433-438
|
| [18] |
DührkopK, FleischauerM, LudwigM, AksenovAA, MelnikAV, MeuselM, et al.. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods, 2019, 16: 299-302
|
| [19] |
DührkopK, NothiasLF, FleischauerM, ReherR, LudwigM, HoffmannMA, et al.. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol, 2021, 39: 462-471
|
| [20] |
EilertzD, MittererM, BuescherJM. automRm: an R package for fully automatic LC-QQQ-MS data preprocessing powered by machine learning. Anal Chem, 2022, 94: 6163-6171
|
| [21] |
El AbieadY, MilfordM, SchoenyH, RuszM, SalekRM, KoellenspergerG. Power of mzRAPP-based performance assessments in MS1-based nontargeted feature detection. Anal Chem, 2022, 94: 8588-8595
|
| [22] |
Fang L, Liu T, Li M, Dong X, Han Y, Xu C, et al. MODMS: a multi-omics database for facilitating biological studies on alfalfa (Medicago sativa L.). Hortic Res. 2023;11:uhad245. https://doi.org/10.1093/hr/uhad245 .
|
| [23] |
FernieAR, SchauerN. Metabolomics-assisted breeding: a viable option for crop improvement?. Trends Genet, 2009, 25: 39-48
|
| [24] |
FernieAR, StittM. On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. Plant Physiol, 2012, 158: 1139-1145
|
| [25] |
FiehnO, RobertsonD, GriffinJ, van der WerfM, NikolauB, MorrisonN, et al.. The metabolomics standards initiative (MSI). Metabolomics, 2007, 3: 175-178
|
| [26] |
Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L.. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18:1157–61.https://doi.org/10.1038/81137 .
|
| [27] |
GaoQ, ZhangJ, CaoJ, XiangC, YuanC, LiX, et al.. MetaDb: a database for metabolites and their regulation in plants with an emphasis on medicinal plants. Mol Hortic, 2024, 4: 17
|
| [28] |
García-AlcaldeF, García-LópezF, DopazoJ, ConesaA. Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics, 2011, 27: 137-139
|
| [29] |
GieraM, YanesO, SiuzdakG. Metabolite discovery: biochemistry's scientific driver. Cell Metab, 2022, 34: 21-34
|
| [30] |
GuoZ, LiB, DuJ, ShenF, ZhaoY, DengY, et al.. LettuceGDB: the community database for lettuce genetics and omics. Plant Commun, 2023, 4, 100425
|
| [31] |
GuptaP, ElserJ, HooksE, D'EustachioP, JaiswalP, NaithaniS. Plant Reactome Knowledgebase: empowering plant pathway exploration and OMICS data analysis. Nucleic Acids Res, 2024, 52: D1538-D1547
|
| [32] |
HaugK, CochraneK, NainalaVC, WilliamsM, ChangJ, JayaseelanKV, et al.. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res, 2020, 48: D440-D444
|
| [33] |
HawkinsC, XueB, YasminF, WyattG, ZerbeP, RheeSY. Plant metabolic network 16: expansion of underrepresented plant groups and experimentally supported enzyme data. Nucleic Acids Res, 2025, 53: D1606-D1613
|
| [34] |
HeS, YangL, YeS, LinY, LiX, WangY, et al.. MPOD: applications of integrated multi-omics database for medicinal plants. Plant Biotechnol J, 2022, 20: 797-799
|
| [35] |
HuY, RuanY, ZhaoXL, JiangF, LiuD, ZhuQ, et al.. PCMD: A multilevel comparison database of intra- and cross-species metabolic profiling in 530 plant species. Plant Commun, 2024, 5, 101038
|
| [36] |
KanehisaM, GotoS. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 2000, 28(1): 27-30
|
| [37] |
KarpPD, BillingtonR, CaspiR, FulcherCA, LatendresseM, KothariA, KeselerIM, KrummenackerM, MidfordPE, OngQ, OngWK, PaleySM, SubhravetiP. The BioCyc collection of microbial genomes and metabolic pathways. Briefings in Bioinformatics, 2019, 20(4): 1085-1093
|
| [38] |
KatajamaaM, OresicM Processing Methods for Differential Analysis of LC/MS Profile Data, 2005, 6: 179
|
| [39] |
KliebensteinD. Advancing genetic theory and application by metabolic quantitative trait loci analysis. Plant Cell, 2009, 21: 1637-1646
|
| [40] |
KohE, GohW, JulcaI, VillanuevaE, MutwilM. PEO: plant expression omnibus – a comparative transcriptomic database for 103 Archaeplastida. Plant J, 2024, 117: 1592-1603
|
| [41] |
Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. 2012;84:283–9. https://doi.org/10.1021/ac202450g .
|
| [42] |
LeeYY, GulerM, ChigumbaDN, WangS, MittalN, MillerC, et al.. HypoRiPPAtlas as an atlas of hypothetical natural products for mass spectrometry database search. Nat Commun, 2023, 14: 4219
|
| [43] |
LiX, HouS, FengM, XiaR, LiJ, TangS, HanY, et al.. MDSi: multi-omics database for setaria italica. BMC Plant Biol, 2023, 23: 223
|
| [44] |
Li D, Ma B, Xu X, Chen G, Li T, He N. MMHub, a database for the mulberry metabolome. Database (Oxford). 2020;2020:baaa011. https://doi.org/10.1093/database/baaa011 .
|
| [45] |
Lin WJ, Shen PC, Liu HC, Cho YC, Hsu MK, Lin IC, et al. LipidSig: a web-based tool for lipidomic data analysis.Nucleic Acids Res. 2021;49:W336–45. https://doi.org/10.1093/nar/gkab419
|
| [46] |
LiuY, LiuHZ, ChenDK, ZengHY, ChenYL, YaoN. PlantMetSuite: a user-friendly web-based tool for metabolomics analysis and visualisation. Plants (Basel), 2023, 12: 2880
|
| [47] |
Liu T, Salguero P, Petek M, Martinez-Mira C, Balzano-Nogueira L, Ramšak Ž, et al. PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. 2022;50:W551–9. https://doi.org/10.1093/nar/gkac352 .
|
| [48] |
Liu CH, Shen PC, Lin WJ, Liu HC, Tsai MH, Huang TY, et al. LipidSig 2.0: integrating lipid characteristic insights into advanced lipidomics data analysis. Nucleic Acids Res. 2024;52:W390–7. https://doi.org/10.1093/nar/gkae335 .
|
| [49] |
LowDY, MicheauP, KoistinenVM, HanhinevaK, AbrankóL, Rodriguez-MateosA, et al.. Data sharing in predRet for accurate prediction of retention time: application to plant food bioactive compounds. Food Chem, 2021, 357, 129757
|
| [50] |
MaC, ZhangHH, WangX. Machine learning for big data analytics in plants. Trends Plant Sci, 2014, 19: 798-808
|
| [51] |
MacNishTR, DanileviczMF, BayerPE, BestryMS, EdwardsD. Application of machine learning and genomics for orphan crop improvement. Nat Commun, 2025, 16: 982
|
| [52] |
Mason AR, Johnson G Jr, Krampen J, Nguyen JNT, Balunas MJ, Schloss PD.mpactR: an R adaptation of the metabolomics peak analysis computational tool (MPACT) for use in reproducible data analysis pipelines. Microbiol Resour Announc. 202511;14:e0099724. https://doi.org/10.1128/mra.00997-24 .
|
| [53] |
MelnikovAD, TsentalovichYP, YansholeVV. Deep learning for the precise peak detection in high-resolution LC–MS data. Anal Chem, 2020, 92: 588-592
|
| [54] |
MeyerRC, SteinfathM, LisecJ, BecherM, Witucka-WallH, TörjékO, et al.. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2007, 104: 4759-4764
|
| [55] |
Miao BB, Dong W, Gu YX, Han ZF, Luo X, Ke CH, et al. OmicsSuite: a customized and pipelined suite for analysis and visualization of multi-omics big data. Hortic Res. 2023;10:uhad195. https://doi.org/10.1093/hr/uhad195 .
|
| [56] |
MohamedA, HillMM. LipidSuite: interactive web server for lipidomics differential and enrichment analysis. Nucleic Acids Res, 2021, 49: W346-W351
|
| [57] |
Montenegro-Burke JR, Guijas C, Siuzdak G. METLIN: a tandem mass spectral library of standards. In Li S, editors.Computational Methods and Data Analysis for Metabolomics .New York:Springer;2020.p.149–63. https://doi.org/10.1007/978-1-0716-0239-3_9
|
| [58] |
OliverSG, WinsonMK, KellDB, BaganzF Systematic Functional Analysis of the Yeast Genome, 1998, 16: 373-378
|
| [59] |
Pakkir ShahAK, WalterA, OttossonF, RussoF, Navarro-DiazM, BoldtJ, et al.. Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data. Nat Protoc, 2025, 20: 92-162
|
| [60] |
Perez de Souza L, Fernie AR. Computational methods for processing and interpreting mass spectrometry-based metabolomics. Essays Biochem. 2024;68:5–13. https://doi.org/10.1042/EBC20230019
|
| [61] |
Perez de Souza L, Naake T, Tohge T, Fernie AR. From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. Gigascience. 2017;6:1–20. https://doi.org/10.1093/gigascience/gix037
|
| [62] |
PriceEJ, DrapalM, Perez-FonsL, AmahD, BhattacharjeeR, HeiderB, et al.. Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops. Plant J, 2020, 101: 1258-1268
|
| [63] |
PriyaP, PatilM, PandeyP, SinghA, BabuVS, Senthil-KumarM. Stress combinations and their interactions in plants database: a one-stop resource on combined stress responses in plants. Plant J, 2023, 116: 1097-1117
|
| [64] |
RuttkiesC, SchymanskiEL, WolfS, HollenderJ, NeumannS. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform, 2016, 8: 3
|
| [65] |
SakuraiN, YamazakiS, SudaK, HosokiA, AkimotoN, TakahashiH, et al.. The thing metabolome repository family (XMRs): comparable untargeted metabolome databases for analyzing sample-specific unknown metabolites. Nucleic Acids Res, 2023, 51: D660-D677
|
| [66] |
SamplesRM, PuckettSP, BalunasMJ. Metabolomics peak analysis computational tool (MPACT): an advanced informatics tool for metabolomics and data visualization of molecules from complex biological samples. Anal Chem, 2023, 95: 8770-8779
|
| [67] |
Sauter H, Lauer M, Fritsch H. Metabolic profiling of plants. In: Baker DR, Fenyes JG, Moberg WK, editors. Synthesis and Chemistry of Agrochemicals II. American Chemical Society;1991.p.288–99https://doi.org/10.1021/bk-1991-0443.ch024
|
| [68] |
SchläpferP, ZhangP, WangC, KimT, BanfM, ChaeL, et al.. Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol, 2017, 173: 2041-2059
|
| [69] |
SeaverSMD, LiuF, ZhangQ, JeffryesJ, FariaJP, EdirisingheJN, et al.. The ModelSEED biochemistry database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res, 2021, 49: D1555
|
| [70] |
ShenS, ZhanC, YangC, FernieAR, LuoJ. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Mol Plant, 2023, 16: 43-63
|
| [71] |
ShiH, WuX, ZhuY, JiangT, WangZ, LiX, et al.. RefMetaPlant: a reference metabolome database for plants across five major phyla. Nucleic Acids Res, 2024, 52: D1614-D1628
|
| [72] |
ShiH, ZhuY, WuX, JiangT, LiX, LiuJ, et al.. CropMetabolome: a comprehensive metabolome database for major crops cross eight categories. Plant J, 2024, 119: 1613-1626
|
| [73] |
SlenterDN, KutmonM, HanspersK, RiuttaA, WindsorJ, NunesN, et al.. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res, 2018, 46: D661-D667
|
| [74] |
Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification.Anal Chem. 2006;78:779–87. https://doi.org/10.1021/ac051437y
|
| [75] |
SongX, NieF, ChenW, MaX, GongK, YangQ, et al.. Coriander Genomics Database: a genomic, transcriptomic, and metabolic database for coriander. Hortic Res, 2020, 7: 55
|
| [76] |
SorokinaM, MerseburgerP, RajanK, YirikMA, SteinbeckC. COCONUT online: collection of open natural products database. J Cheminform, 2021, 13: 2
|
| [77] |
StancliffeE, PattiGJ. PeakDetective: a semisupervised deep learning-based approach for peak curation in untargeted metabolomics. Anal Chem, 2023, 95: 9397-9403
|
| [78] |
SteinbeckC, ConesaP, HaugK, MahendrakerT, WilliamsM, MaguireE, et al.. MetaboLights: towards a new COSMOS of metabolomics data management. Metabolomics, 2012, 8: 757-760
|
| [79] |
SulpiceR, PylET, IshiharaH, TrenkampS, SteinfathM, Witucka-WallH, et al.. Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci U S A, 2009, 106: 10348-10353
|
| [80] |
TautenhahnR, PattiGJ, RinehartD, SiuzdakG. XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem, 2012, 84: 5035-5039
|
| [81] |
TheodoridisGA, GikaHG, WantEJ, WilsonID. Liquid chromatography–mass spectrometry based global metabolite profiling: a review. Anal Chim Acta, 2012, 711: 7-16
|
| [82] |
Tian Z, Hu X, Xu Y, Liu M, Liu H, Li D, et al. PMhub 1.0: a comprehensive plant metabolome database. Nucleic Acids Res. 2024;52:D1579–87. https://doi.org/10.1093/nar/gkad811 .
|
| [83] |
TiwaryS, LevyR, GutenbrunnerP, Salinas SotoF, PalaniappanKK, DemingL, et al.. High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis. Nat Methods, 2019, 16: 519-525
|
| [84] |
TohgeT, FernieAR. Web-based resources for mass-spectrometry-based metabolomics: a user’s guide. Phytochemistry, 2009, 70: 450-456
|
| [85] |
TsugawaH, CajkaT, KindT, MaY, HigginsB, IkedaK, et al.. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods, 2015, 12: 523-526
|
| [86] |
UppalK, WalkerDI, JonesDP. xMSannotator: an R package for network-based annotation of high-resolution metabolomics data. Anal Chem, 2017, 89: 1063-1067
|
| [87] |
VinaixaM, SchymanskiEL, NeumannS, NavarroM, SalekRM, YanesO. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. TrAC, Trends Anal Chem, 2016, 78: 23-35
|
| [88] |
WadieB, StuartL, RathCM, DrotleffB, MamedovS, AlexandrovT. METASPACE-ML: context-specific metabolite annotation for imaging mass spectrometry using machine learning. Nat Commun, 2024, 15: 9110
|
| [89] |
WangY, JiJ, FangZ, YangL, ZhuangM, ZhangY, et al.. BoGDB: an integrative genomic database for Brassica oleracea L. Front Plant Sci, 2022, 13: 852291
|
| [90] |
WangX, LiangS, YangW, YuK, LiangF, ZhaoB, et al.. MetMiner: A user-friendly pipeline for large-scale plant metabolomics data analysis. J Integr Plant Biol, 2024, 66: 2329-2345
|
| [91] |
WangX, AbieadYE, AcharyaDD, BrownCJ, ClevengerK, HuJ, et al.. MS-RT: a method for evaluating MS/MS clustering performance for metabolomics data. J Proteome Res, 2025, 24: 1778-1790
|
| [92] |
WishartDS, BartokB, OlerE, LiangKYH, BudinskiZ, BerjanskiiM, et al.. MarkerDB: an online database of molecular biomarkers. Nucleic Acids Res, 2021, 49: D1259-D1267
|
| [93] |
WishartDS, KnoxC, GuoAC, ChengD, ShrivastavaS, TzurD, et al.. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res, 2008, 36: D901-D906
|
| [94] |
Wishart DS, Kruger R, Sivakumaran A, Harford K, Sanford S, Doshi R, et al. PathBank 2.0—the pathway database for model organism metabolomics. Nucleic Acids Res. 2024;52:D654–62.. https://doi.org/10.1093/nar/gkad1041 .
|
| [95] |
Wishart DS, Tzur D, Knox C, Eisner R, Guo A, Young N, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35:D521-D26. https://doi.org/10.1093/nar/gkl923.
|
| [96] |
XiaJ, PsychogiosN, YoungN, WishartDS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res, 2009, 37: W652-W660
|
| [97] |
Xue J, Wang B, Ji H, Li W. RT-Transformer: retention time prediction for metabolite annotation to assist in metabolite identification. Bioinformatics. 2024;40:btae084. https://doi.org/10.1093/bioinformatics/btae084 .
|
| [98] |
YangZ, LiuZ, XuH, LiY, HuangS, CaoG, et al.. ArecaceaeMDB: a comprehensive multi-omics database for arecaceae breeding and functional genomics studies. Plant Biotechnol J, 2023, 21: 11-13
|
| [99] |
YangZ, WangS, WeiL, HuangY, LiuD, JiaY, et al.. BnIR: a multi-omics database with various tools for Brassica napus research and breeding. Mol Plant, 2023, 16: 775-789
|
| [100] |
YurektenO, PayneT, TejeraN, AmaladossFX, MartinC, WilliamsM, et al.. MetaboLights: open data repository for metabolomics. Nucleic Acids Res, 2024, 52: D640-D646
|
| [101] |
ZakirM, LeVatteMA, WishartDS. RT-Pred: a web server for accurate, customized liquid chromatography retention time prediction of chemicals. J Chromatogr A, 2025, 1747: 465816
|
| [102] |
ZengX, ZhangP, WangY, QinC, ChenS, HeW, et al.. CMAUP: a database of collective molecular activities of useful plants. Nucleic Acids Res, 2019, 47: D1118-D1127
|
RIGHTS & PERMISSIONS
The Author(s)