Micro-Tom tomato: from ornamental horticulture to fundamental research

Karla Gasparini , Yuri Gomes Figueiredo , Lucas Maia de Aquino , Cassia Nayana da Silva Vitorino , Dimas Mendes Ribeiro , Lázaro Eustáquio Pereira Peres , Agustin Zsögön

Horticulture Advances ›› 2025, Vol. 3 ›› Issue (1) : 8

PDF
Horticulture Advances ›› 2025, Vol. 3 ›› Issue (1) : 8 DOI: 10.1007/s44281-025-00062-x
Review

Micro-Tom tomato: from ornamental horticulture to fundamental research

Author information +
History +
PDF

Abstract

Model organisms have been instrumental in advancing discoveries in plant biology. Tomato (Solanum lycopersicum) is distinguished as a prominent model system due to its well-characterized genetics and economic significance as a crop. Micro-Tom (MT), an ornamental dwarf tomato variety, was adopted by the tomato research community as a model plant due to its short stature, fast life cycle, ease of genetic transformation, and ample genomic resources. Over the last 30 years, the use of MT has illuminated various facets of plant development, including the control of growth habit, glandular trichomes, leaf anatomy, and the formation of arbuscular mycorrhizal symbioses. We briefly summarize these contributions and point to further potential advances in the future.

Keywords

Dwarfism / Model organism / Solanaceae / Biological Sciences / Genetics / Plant Biology

Cite this article

Download citation ▾
Karla Gasparini, Yuri Gomes Figueiredo, Lucas Maia de Aquino, Cassia Nayana da Silva Vitorino, Dimas Mendes Ribeiro, Lázaro Eustáquio Pereira Peres, Agustin Zsögön. Micro-Tom tomato: from ornamental horticulture to fundamental research. Horticulture Advances, 2025, 3(1): 8 DOI:10.1007/s44281-025-00062-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlonsoJM, StepanovaAN, LeisseTJ, KimCJ, ChenH, ShinnP, et al. . Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301: 653-657.

[2]

Alonso-BlancoC, KoornneefM. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci, 2000, 5: 22-29.

[3]

AlseekhS, OfnerI, PlebanT, TripodiP, Di DatoF, CammareriM, et al. . Resolution by recombination: breaking up Solanum pennellii introgressions. Trends Plant Sci, 2013, 18: 536-538.

[4]

AnkenyRA, LeonelliS. What’s so special about model organisms?. Stud Hist Philos Sci, 2011, 42: 313-323.

[5]

Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796-815.

[6]

BaeSH, ParkJ, ParkSJ, HanJ, OhJH. Transcriptome data for tissue-specific genes in four reproductive organs at three developmental stages of micro-tom tomato. Data Brief, 2021, 34. 106715

[7]

BarkerSJ, TaguD. The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul, 2000, 19: 144-154.

[8]

Bergau N, Bennewitz S, Syrowatka F, Hause G, Tissier A. The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. BMC Plant Biol. 2015;15:289. https://doi.org/10.1186/s12870-015-0678-z.

[9]

BishopGJ, NomuraT, YokotaT, HarrisonK, NoguchiT, FujiokaS, et al. . The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci U S A, 1999, 96: 1761-1766.

[10]

BouzroudS, GaspariniK, HuG, BarbosaMAM, RosaBL, FahrM, et al. . Down regulation and loss of Auxin Response Factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes (Basel), 2020, 11: 272.

[11]

BuckleyTN, SackL, GilbertME. The role of bundle sheath extensions and life form in stomatal responses to leaf water status. Plant Physiol, 2011, 156: 962-973.

[12]

Campos ML, Carvalho RF, Benedito VA, Peres LEP. Small and remarkable. The Micro-Tom model system as a tool to discover novel hormonal functions and interactions. Plant Signal Behav. 2010;5:267–70. https://doi.org/10.4161/psb.5.3.10622.

[13]

CarvalhoRF, CamposML, PinoLE, CrestanaSL, ZsögönA, LimaJE, et al. . Convergence of developmental mutants into a single tomato model system: ‘Micro-Tom’ as an effective toolkit for plant development research. Plant Methods, 2011, 7: 18.

[14]

ChangJ, WuS, YouT, WangJ, SunB, XuB, et al. . Spatiotemporal formation of glands in plants is modulated by MYB-like transcription factors. Nat Commun, 2024, 15: 2303.

[15]

Chang J, Yang J, Wang J, Wu S. Comprehensive observation of trichome development in Micro-tom tomato. Vegetable Research. 2021;1:6. https://doi.org/10.48130/VR-2021-0006.

[16]

Chetelat RT. Overcoming sterility and unilateral incompatibility of Solanum lycopersicum × S. sitiens hybrids. Euphytica. 2016;207:319–30. https://doi.org/10.1007/s10681-015-1543-8.

[17]

Chetty VJ, Ceballos N, Garcia D, Narváez-Vásquez J, Lopez W, Orozco-Cárdenas ML. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep. 2013;32:239–47. https://doi.org/10.1007/s00299-012-1358-1.

[18]

Cruz-Mendivil A, Rivera-Lopez J, German-Baez LJ, Lopez-Meyer M, Hernandez-Verdugo S, Lopez-Valenzuela JA, et al. A simple and efficient protocol for plant regeneration and genetic transformation of tomato cv. micro-tom from leaf explants. HortScience. 2011;46:1655–60. https://doi.org/10.21273/HORTSCI.46.12.1655.

[19]

DanY, YanH, MunyikwaT, DongJ, ZhangY, ArmstrongCL. MicroTom–a high-throughput model transformation system for functional genomics. Plant Cell Rep, 2006, 25: 432-441.

[20]

DuanS, FengG, LimpensE, BonfanteP, XieX, ZhangL. Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nat Rev Microbiol, 2024, 22: 773-790.

[21]

EshedY, ZamirD. An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147-1162.

[22]

EzawaT, SaitoK. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytol, 2018, 220: 1116-1121.

[23]

FernándezI, CosmeM, StringlisIA, YuK, de JongeR, van WeesSM, et al. . Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. New Phytol, 2019, 223: 867-881.

[24]

FracettoGGM, PeresLEP, MehdyMC, LambaisMR. Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis, 2013, 60: 155-167.

[25]

FracettoGGM, PeresLEP, LambaisMR. Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development. Arch Microbiol, 2017, 199: 787-798.

[26]

GaspariniK, da SilvaMF, CostaLC, MartinsSCV, RibeiroDM, PeresLEP, et al. . The Lanata trichome mutation increases stomatal conductance and reduces leaf temperature in tomato. J Plant Physiol, 2021, 260. 153413

[27]

GaspariniK, GaspariniJ, TherezanR, VicenteMH, SakamotoT, FigueiraA, et al. . Natural genetic variation in the HAIRS ABSENT (H) gene increases type-VI glandular trichomes in both wild and domesticated tomatoes. J Plant Physiol, 2023, 280. 153859

[28]

GibsonMJS, MoyleLC. Regional differences in the abiotic environment contribute to genomic divergence within a wild tomato species. Mol Ecol, 2020, 29: 2204-2217.

[29]

GlasJJ, SchimmelBCJ, AlbaJM, Escobar-BravoR, SchuurinkRC, KantMR. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci., 2012, 13: 17077-103.

[30]

Goytia BerteroV, PrattaGR, ArceDP. Independent transcriptomic and proteomic networks reveal common differentially expressed chaperone and interactor genes during tomato cv. Micro-Tom Fruit Ripening Plant Gene, 2021, 28. 100346

[31]

GuoM, ZhangYL, MengZJ, JiangJ. Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genet Mol Res, 2012, 11: 661-671.

[32]

Herrera-EstrellaL, DepickerA, Van MontaguM, SchellJ. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Biotechnology, 1992, 24: 377-381

[33]

Jeong YY, Noh YS, Kim SW, Seo PJ. Efficient regeneration of protoplasts from Solanum lycopersicum cultivar Micro-Tom. Biol Methods Protoc. 2024;9:bpae008. https://doi.org/10.1093/biomethods/bpae008.

[34]

JonesCM, RickCM, AdamsD, JernstedtJ, ChetelatRT. Genealogy and fine mapping of Obscuravenosa, a gene affecting the distribution of chloroplasts in leaf veins and evidence of selection during breeding of tomatoes (Lycopersicon esculentum; Solanaceae). Am J Bot, 2007, 94: 935-947.

[35]

KaplanogluE, KolotilinI, MenassaR, DonlyC. Plastid transformation of micro-tom tomato with a hemipteran double-stranded RNA results in RNA interference in multiple insect species. Int J Mol Sci, 2022, 23: 3918.

[36]

KenzoT, IchieT, WatanabeY, HiromiT. Ecological distribution of homobaric and heterobaric leaves in tree species of malaysian lowland tropical rainforest. Am J Bot, 2007, 94: 764-775.

[37]

KhuongTT, CrétéP, RobagliaC, CaffarriS. Optimisation of tomato micro-tom regeneration and selection on glufosinate/basta and dependency of gene silencing on transgene copy number. Plant Cell Rep, 2013, 32: 1441-1454.

[38]

KobayashiM, NagasakiH, GarciaV, JustD, BresC, MauxionJP, et al. . Genome-wide analysis of intraspecific DNA polymorphism in ‘Micro-Tom’, a model cultivar of tomato (Solanum lycopersicum). Plant Cell Physiol, 2014, 55: 445-454.

[39]

KohlerRELords of the Fly: Drosophila Genetics and the Experimental Life, 1994ChicagoUniversity of Chicago Press

[40]

KriegerU, LippmanZB, ZamirD. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet, 2010, 42: 459-463.

[41]

LeonelliS, AnkenyRA. What makes a model organism?. Endeavour, 2013, 37: 209-212.

[42]

LifschitzE, EshedY. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J Exp Bot, 2006, 57: 3405-3414.

[43]

LimaJE, CarvalhoRF, NetoAT, FigueiraA, PeresLEP. Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. Plant Sci, 2004, 167: 753-757.

[44]

Lubis WMY, Adrian M, Jadid N, Widiastuti A, Ezura H, Mubarok S, et al. Transcriptome dataset from Solanum lycopersicum L. cv. Micro-Tom; wild type and two mutants of INDOLE-ACETIC-ACID (SlIAA9) using long-reads sequencing oxford nanopore technologies. BMC Res Notes. 2023;16:40. https://doi.org/10.1186/s13104-023-06306-1.

[45]

LuckwillLCThe genus lycopersicon: an historical, biological and taxonomic survey of the wild and cultivated tomatoes, 1943AberdeenAberdeen University Press

[46]

MartiE, GisbertC, BishopGJ, DixonMS, Garcia-MartinezJL. Genetic and physiological characterization of tomato cv. Micro-Tom J Exp Bot, 2006, 57: 2037-2047.

[47]

Molinero-RosalesN, LatorreA, JamilenaM, LozanoR. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta, 2004, 218: 427-434.

[48]

MoreiraJDR, RosaBL, LiraBS, LimaJE, CorreiaLNF, OtoniWC, et al. . Auxin-driven ecophysiological diversification of leaves in domesticated tomato. Plant Physiol, 2022, 190: 113-126.

[49]

Moreira JDR, Quiñones A, Lira BS, Robledo JM, Curtin SJ, Vicente MH, et al. SELF PRUNING 3C is a flowering repressor that modulates seed germination, root architecture, and drought responses. (R Melzer, Ed.). J Exp Bot. 2022b;73:6226–40. https://doi.org/10.1093/jxb/erac265.

[50]

MurashigeT, SkoogF. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497.

[51]

Mutschler MA, Liedl BE. Interspecific crossing barriers in Lycopersicon and their relationship to self-incompatibility. In: Williams EG, Clarke AE, Knox RB, editors. Genetic control of self-incompatibility and reproductive development in flowering plants. Dordrecht:Springer;1994.p.164–88. https://doi.org/10.1007/978-94-017-1669-7_9.

[52]

NagamineA, EzuraH. Genome editing of DWARF and SELF-PRUNING rapidly confers traits suitable for plant factories while retaining useful traits in tomato. Breed Sci, 2024, 74: 59-72.

[53]

NakazatoT, WarrenDL, MoyleLC. Ecological and geographic modes of species divergence in wild tomatoes. Am J Bot, 2010, 97: 680-693.

[54]

NicotraAB, LeighA, BoyceCK, JonesCS, NiklasKJ, RoyerDL, et al. . The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol, 2011, 38: 535-552

[55]

O’MalleyRC, EckerJR. Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J, 2010, 61: 928-940.

[56]

PérilleuxC, LobetG, TocquinP. Inflorescence development in tomato: gene functions within a zigzag model. Front Plant Sci, 2014, 5: 121.

[57]

PérilleuxC, BouchéF, RandouxM, Orman-LigezaB. Turning meristems into fortresses. Trends Plant Sci, 2019, 24: 431-442.

[58]

PetersSA, BargstenJW, SzinayD, van de BeltJ, VisserRGF, BaiY, et al. . Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant J., 2012, 71: 602-14.

[59]

PinoLE, Lombardi-CrestanaS, AzevedoMS, ScottonDC, BorgoL, QueciniV, et al. . The Rg1 allele as a valuable tool for genetic transformation of the tomato ‘Micro-Tom’ model system. Plant Methods, 2010, 6: 23.

[60]

Pino LE, Tulmann Neto A, Zsögön A, Piotto FA, Bernardi WF, Peres LEP, et al. Induced mutagenesis and natural genetic variation in tomato ‘Micro-Tom’. Acta Horticulturae. 2009;821:63–72. https://doi.org/10.17660/ActaHortic.2009.821.5

[61]

PnueliL, Carmel-GorenL, HarevenD, GutfingerT, AlvarezJ, GanalM, et al. . The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development, 1998, 125: 1979-1989.

[62]

ReinhardtD, KuhlemeierC. Plant architecture. EMBO Rep, 2002, 3: 846-851.

[63]

RickCM. The tomato. Sci Am, 1978, 239: 76-87.

[64]

Rillig MC, Ramsey PW, Gannon JE, Mummey DL, Gadkar V, Kapulnik Y. Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant Soil. 2008;308:267–75. https://doi.org/10.1007/s11104-008-9629-x.

[65]

RobbinsMD, SimSC, YangW, Van DeynzeA, van der KnaapE, JoobeurT, et al. . Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. J Exp Bot, 2011, 62: 1831-1845.

[66]

RobledoJM, MedeirosD, VicenteMH, AzevedoAA, ThompsonAJ, PeresLEP, et al. . Control of water-use efficiency by florigen. Plant Cell Environ, 2020, 43: 76-86.

[67]

SackL, ScoffoniC. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol, 2013, 198: 983-1000.

[68]

SackL, ScoffoniC, McKownAD, FroleK, RawlsM, HavranJC, et al. . Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat Commun, 2012, 3: 837.

[69]

Scott JW, Harbaugh BK. Micro-Tom – a miniature dwarf tomato. Agricultural And Food Sciences. 1989.

[70]

ShalitA, RozmanA, GoldshmidtA, AlvarezJP, BowmanJL, EshedY, et al. . The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci U S A, 2009, 106: 8392-8397.

[71]

Shaul-KeinanO, GadkarV, GinzbergI, GrünzweigJM, ChetI, EladY, et al. . Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol, 2002, 154: 501-507.

[72]

ShikataM, EzuraH. Micro-tom tomato as an alternative plant model system: mutant collection and efficient transformation. Methods Mol Biol, 2016, 1363: 47-55.

[73]

ShirasawaK, AriizumiT. Near-complete genome assembly of tomato (Solanum lycopersicum) cultivar Micro-Tom. Plant Biotechnol, 2024, 41: 367-374.

[74]

ShiuSH, Lehti-ShiuMD. Assessing the evolution of research topics in a biological field using plant science as an example. PLoS Biol, 2024, 22. e3002612

[75]

SilvaWB, VicenteMH, RobledoJM, ReartesDS, FerrariRC, BianchettiR, et al. . SELF-PRUNING acts synergistically with DIAGEOTROPICA to guide auxin responses and proper growth form. Plant Physiol, 2018, 176: 2904-2916.

[76]

SunHJ, UchiiS, WatanabeS, EzuraH. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol, 2006, 47: 426-431.

[77]

SunY, ShangL, ZhuQH, FanL, GuoL. Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci, 2022, 27: 391-401.

[78]

TerashimaI. Anatomy of nonuniform leaf photosynthesis. Photosynth Res, 1992, 31: 195-212.

[79]

TherezanR, KortbeekR, VendemiattiE, LegarreaS, de AlencarSM, SchuurinkRC, et al. . Introgression of the sesquiterpene biosynthesis from Solanum habrochaites to cultivated tomato offers insights into trichome morphology and arthropod resistance. Planta, 2021, 254: 11.

[80]

ThompsonAJ, AndrewsJ, MulhollandBJ, McKeeJM, HiltonHW, HorridgeJS, et al. . Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol, 2007, 143: 1905-1917.

[81]

Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485: 635-641.

[82]

TóthM, TóthZG, FeketeS, SzabóZ, TóthZ. Improved and highly efficient agrobacterium rhizogenes-mediated genetic transformation protocol: efficient tools for functional analysis of root-specific resistance genes for Solanum lycopersicum cv. Micro-Tom Sustainability, 2022, 14: 6525.

[83]

Van EckJ. Genome editing and plant transformation of solanaceous food crops. Curr Opin Biotechnol, 2018, 49: 35-41.

[84]

VendemiattiE, TherezanR, VicenteMH, PintoMS, BergauN, YangL, et al. . The genetic complexity of type-IV trichome development reveals the steps towards an insect-resistant tomato. Plants (Basel), 2022, 11: 1309.

[85]

VendemiattiE, Hernández-De LiraIO, SnijdersR, Torne-SrivastavaT, TherezanR, Simioni PrantsG, et al. . Woolly mutation with the Get02 locus overcomes the polygenic nature of trichome-based pest resistance in tomato. Plant Physiol, 2024, 195: 911-923.

[86]

VicenteMH, ZsögönA, de SáAFL, RibeiroRV, PeresLEP. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum). J Plant Physiol, 2015, 177: 11-19.

[87]

WangY, HeX, YuF. Non-host plants: Are they mycorrhizal networks players?. Plant Divers, 2021, 44: 127-134.

[88]

XuJ, van HerwijnenZO, DrägerDB, SuiC, HaringMA, SchuurinkRC. SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato glandular cells. Plant Cell, 2018, 30: 2988-3005.

[89]

YangC, MarillonnetS, TissierA. The scarecrow-like transcription factor SlSCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato (Solanum lycopersicum). Plant J, 2021, 107: 1102-1118.

[90]

YeagerAF. Determinate growth in the tomato. J Hered, 1927, 18: 263-265.

[91]

ZsögönA, LambaisMR, BeneditoVA, de Oliveira FigueiraAV, PeresLEP. Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants. Sci Agric, 2008, 65: 259-267.

[92]

ZsögönA, Alves NegriniAC, PeresLEP, NguyenHT, BallMC. A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum). New Phytol, 2015, 205: 618-626.

[93]

Zsögön A, Peres LEP. Molecular control of plant shoot architecture. Plant Cell. 2018;30:tpc.118.tt1218. https://doi.org/10.1105/tpc.118.tt1218.

[94]

Zwieniecki MA, Brodribb TJ, Holbrook NM. Hydraulic design of leaves: insights from rehydration kinetics. Plant, Cell & Environment. 2007;30:910-21. https://doi.org/10.1111/j.1365-3040.2007.001681.x.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico(406455/2022-8)

Fundação de Amparo à Pesquisa do Estado de Minas Gerais(RED00060-23)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/