Micro-Tom tomato: from ornamental horticulture to fundamental research

Karla Gasparini, Yuri Gomes Figueiredo, Lucas Maia de Aquino, Cassia Nayana da Silva Vitorino, Dimas Mendes Ribeiro, Lázaro Eustáquio Pereira Peres, Agustin Zsögön

Horticulture Advances ›› 2025, Vol. 3 ›› Issue (1) : 8.

Horticulture Advances ›› 2025, Vol. 3 ›› Issue (1) : 8. DOI: 10.1007/s44281-025-00062-x
Review

Micro-Tom tomato: from ornamental horticulture to fundamental research

Author information +
History +

Abstract

Model organisms have been instrumental in advancing discoveries in plant biology. Tomato (Solanum lycopersicum) is distinguished as a prominent model system due to its well-characterized genetics and economic significance as a crop. Micro-Tom (MT), an ornamental dwarf tomato variety, was adopted by the tomato research community as a model plant due to its short stature, fast life cycle, ease of genetic transformation, and ample genomic resources. Over the last 30 years, the use of MT has illuminated various facets of plant development, including the control of growth habit, glandular trichomes, leaf anatomy, and the formation of arbuscular mycorrhizal symbioses. We briefly summarize these contributions and point to further potential advances in the future.

Keywords

Dwarfism / Model organism / Solanaceae

Cite this article

Download citation ▾
Karla Gasparini, Yuri Gomes Figueiredo, Lucas Maia de Aquino, Cassia Nayana da Silva Vitorino, Dimas Mendes Ribeiro, Lázaro Eustáquio Pereira Peres, Agustin Zsögön. Micro-Tom tomato: from ornamental horticulture to fundamental research. Horticulture Advances, 2025, 3(1): 8 https://doi.org/10.1007/s44281-025-00062-x

References

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301: 653-657
CrossRef Google scholar
Alonso-Blanco C, Koornneef M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci, 2000, 5: 22-29
CrossRef Google scholar
Alseekh S, Ofner I, Pleban T, Tripodi P, Di Dato F, Cammareri M, et al. Resolution by recombination: breaking up Solanum pennellii introgressions. Trends Plant Sci, 2013, 18: 536-538
CrossRef Google scholar
Ankeny RA, Leonelli S. What’s so special about model organisms? Stud Hist Philos Sci, 2011, 42: 313-323
CrossRef Google scholar
Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796-815
CrossRef Google scholar
Bae SH, Park J, Park SJ, Han J, Oh JH. Transcriptome data for tissue-specific genes in four reproductive organs at three developmental stages of micro-tom tomato. Data Brief, 2021, 34: 106715.
CrossRef Google scholar
Barker SJ, Tagu D. The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul, 2000, 19: 144-154
CrossRef Google scholar
Bergau N, Bennewitz S, Syrowatka F, Hause G, Tissier A. The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. BMC Plant Biol. 2015;15:289. https://doi.org/10.1186/s12870-015-0678-z.
Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, et al. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci U S A, 1999, 96: 1761-1766
CrossRef Google scholar
Bouzroud S, Gasparini K, Hu G, Barbosa MAM, Rosa BL, Fahr M, et al. Down regulation and loss of Auxin Response Factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes (Basel), 2020, 11: 272
CrossRef Google scholar
Buckley TN, Sack L, Gilbert ME. The role of bundle sheath extensions and life form in stomatal responses to leaf water status. Plant Physiol, 2011, 156: 962-973
CrossRef Google scholar
Campos ML, Carvalho RF, Benedito VA, Peres LEP. Small and remarkable. The Micro-Tom model system as a tool to discover novel hormonal functions and interactions. Plant Signal Behav. 2010;5:267–70. https://doi.org/10.4161/psb.5.3.10622.
Carvalho RF, Campos ML, Pino LE, Crestana SL, Zsögön A, Lima JE, et al. Convergence of developmental mutants into a single tomato model system: ‘Micro-Tom’ as an effective toolkit for plant development research. Plant Methods, 2011, 7: 18
CrossRef Google scholar
Chang J, Wu S, You T, Wang J, Sun B, Xu B, et al. Spatiotemporal formation of glands in plants is modulated by MYB-like transcription factors. Nat Commun, 2024, 15: 2303
CrossRef Google scholar
Chang J, Yang J, Wang J, Wu S. Comprehensive observation of trichome development in Micro-tom tomato. Vegetable Research. 2021;1:6. https://doi.org/10.48130/VR-2021-0006.
Chetelat RT. Overcoming sterility and unilateral incompatibility of Solanum lycopersicum × S. sitiens hybrids. Euphytica. 2016;207:319–30. https://doi.org/10.1007/s10681-015-1543-8.
Chetty VJ, Ceballos N, Garcia D, Narváez-Vásquez J, Lopez W, Orozco-Cárdenas ML. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep. 2013;32:239–47. https://doi.org/10.1007/s00299-012-1358-1.
Cruz-Mendivil A, Rivera-Lopez J, German-Baez LJ, Lopez-Meyer M, Hernandez-Verdugo S, Lopez-Valenzuela JA, et al. A simple and efficient protocol for plant regeneration and genetic transformation of tomato cv. micro-tom from leaf explants. HortScience. 2011;46:1655–60. https://doi.org/10.21273/HORTSCI.46.12.1655.
Dan Y, Yan H, Munyikwa T, Dong J, Zhang Y, Armstrong CL. MicroTom–a high-throughput model transformation system for functional genomics. Plant Cell Rep, 2006, 25: 432-441
CrossRef Google scholar
Duan S, Feng G, Limpens E, Bonfante P, Xie X, Zhang L. Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nat Rev Microbiol, 2024, 22: 773-790
CrossRef Google scholar
Eshed Y, Zamir D. An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147-1162
CrossRef Google scholar
Ezawa T, Saito K. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytol, 2018, 220: 1116-1121
CrossRef Google scholar
Fernández I, Cosme M, Stringlis IA, Yu K, de Jonge R, van Wees SM, et al. Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. New Phytol, 2019, 223: 867-881
CrossRef Google scholar
Fracetto GGM, Peres LEP, Mehdy MC, Lambais MR. Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis, 2013, 60: 155-167
CrossRef Google scholar
Fracetto GGM, Peres LEP, Lambais MR. Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development. Arch Microbiol, 2017, 199: 787-798
CrossRef Google scholar
Gasparini K, da Silva MF, Costa LC, Martins SCV, Ribeiro DM, Peres LEP, et al. The Lanata trichome mutation increases stomatal conductance and reduces leaf temperature in tomato. J Plant Physiol, 2021, 260: 153413.
CrossRef Google scholar
Gasparini K, Gasparini J, Therezan R, Vicente MH, Sakamoto T, Figueira A, et al. Natural genetic variation in the HAIRS ABSENT (H) gene increases type-VI glandular trichomes in both wild and domesticated tomatoes. J Plant Physiol, 2023, 280: 153859.
CrossRef Google scholar
Gibson MJS, Moyle LC. Regional differences in the abiotic environment contribute to genomic divergence within a wild tomato species. Mol Ecol, 2020, 29: 2204-2217
CrossRef Google scholar
Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci., 2012, 13: 17077-103
CrossRef Google scholar
Goytia Bertero V, Pratta GR, Arce DP. Independent transcriptomic and proteomic networks reveal common differentially expressed chaperone and interactor genes during tomato cv. Micro-Tom Fruit Ripening Plant Gene, 2021, 28: 100346.
CrossRef Google scholar
Guo M, Zhang YL, Meng ZJ, Jiang J. Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genet Mol Res, 2012, 11: 661-671
CrossRef Google scholar
Herrera-Estrella L, Depicker A, Van Montagu M, Schell J. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Biotechnology, 1992, 24: 377-381.
Jeong YY, Noh YS, Kim SW, Seo PJ. Efficient regeneration of protoplasts from Solanum lycopersicum cultivar Micro-Tom. Biol Methods Protoc. 2024;9:bpae008. https://doi.org/10.1093/biomethods/bpae008.
Jones CM, Rick CM, Adams D, Jernstedt J, Chetelat RT. Genealogy and fine mapping of Obscuravenosa, a gene affecting the distribution of chloroplasts in leaf veins and evidence of selection during breeding of tomatoes (Lycopersicon esculentum; Solanaceae). Am J Bot, 2007, 94: 935-947
CrossRef Google scholar
Kaplanoglu E, Kolotilin I, Menassa R, Donly C. Plastid transformation of micro-tom tomato with a hemipteran double-stranded RNA results in RNA interference in multiple insect species. Int J Mol Sci, 2022, 23: 3918
CrossRef Google scholar
Kenzo T, Ichie T, Watanabe Y, Hiromi T. Ecological distribution of homobaric and heterobaric leaves in tree species of malaysian lowland tropical rainforest. Am J Bot, 2007, 94: 764-775
CrossRef Google scholar
Khuong TT, Crété P, Robaglia C, Caffarri S. Optimisation of tomato micro-tom regeneration and selection on glufosinate/basta and dependency of gene silencing on transgene copy number. Plant Cell Rep, 2013, 32: 1441-1454
CrossRef Google scholar
Kobayashi M, Nagasaki H, Garcia V, Just D, Bres C, Mauxion JP, et al. Genome-wide analysis of intraspecific DNA polymorphism in ‘Micro-Tom’, a model cultivar of tomato (Solanum lycopersicum). Plant Cell Physiol, 2014, 55: 445-454
CrossRef Google scholar
Kohler RE. Lords of the Fly: Drosophila Genetics and the Experimental Life, 1994. Chicago: University of Chicago Press
Krieger U, Lippman ZB, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet, 2010, 42: 459-463
CrossRef Google scholar
Leonelli S, Ankeny RA. What makes a model organism? Endeavour, 2013, 37: 209-212
CrossRef Google scholar
Lifschitz E, Eshed Y. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J Exp Bot, 2006, 57: 3405-3414
CrossRef Google scholar
Lima JE, Carvalho RF, Neto AT, Figueira A, Peres LEP. Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. Plant Sci, 2004, 167: 753-757
CrossRef Google scholar
Lubis WMY, Adrian M, Jadid N, Widiastuti A, Ezura H, Mubarok S, et al. Transcriptome dataset from Solanum lycopersicum L. cv. Micro-Tom; wild type and two mutants of INDOLE-ACETIC-ACID (SlIAA9) using long-reads sequencing oxford nanopore technologies. BMC Res Notes. 2023;16:40. https://doi.org/10.1186/s13104-023-06306-1.
Luckwill LC. The genus lycopersicon: an historical, biological and taxonomic survey of the wild and cultivated tomatoes, 1943. Aberdeen: Aberdeen University Press
Marti E, Gisbert C, Bishop GJ, Dixon MS, Garcia-Martinez JL. Genetic and physiological characterization of tomato cv. Micro-Tom J Exp Bot, 2006, 57: 2037-2047
CrossRef Google scholar
Molinero-Rosales N, Latorre A, Jamilena M, Lozano R. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta, 2004, 218: 427-434
CrossRef Google scholar
Moreira JDR, Rosa BL, Lira BS, Lima JE, Correia LNF, Otoni WC, et al. Auxin-driven ecophysiological diversification of leaves in domesticated tomato. Plant Physiol, 2022, 190: 113-126
CrossRef Google scholar
Moreira JDR, Quiñones A, Lira BS, Robledo JM, Curtin SJ, Vicente MH, et al. SELF PRUNING 3C is a flowering repressor that modulates seed germination, root architecture, and drought responses. (R Melzer, Ed.). J Exp Bot. 2022b;73:6226–40. https://doi.org/10.1093/jxb/erac265.
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497
CrossRef Google scholar
Mutschler MA, Liedl BE. Interspecific crossing barriers in Lycopersicon and their relationship to self-incompatibility. In: Williams EG, Clarke AE, Knox RB, editors. Genetic control of self-incompatibility and reproductive development in flowering plants. Dordrecht:Springer;1994.p.164–88. https://doi.org/10.1007/978-94-017-1669-7_9.
Nagamine A, Ezura H. Genome editing of DWARF and SELF-PRUNING rapidly confers traits suitable for plant factories while retaining useful traits in tomato. Breed Sci, 2024, 74: 59-72
CrossRef Google scholar
Nakazato T, Warren DL, Moyle LC. Ecological and geographic modes of species divergence in wild tomatoes. Am J Bot, 2010, 97: 680-693
CrossRef Google scholar
Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, et al. The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol, 2011, 38: 535-552.
O’Malley RC, Ecker JR. Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J, 2010, 61: 928-940
CrossRef Google scholar
Périlleux C, Lobet G, Tocquin P. Inflorescence development in tomato: gene functions within a zigzag model. Front Plant Sci, 2014, 5: 121
CrossRef Google scholar
Périlleux C, Bouché F, Randoux M, Orman-Ligeza B. Turning meristems into fortresses. Trends Plant Sci, 2019, 24: 431-442
CrossRef Google scholar
Peters SA, Bargsten JW, Szinay D, van de Belt J, Visser RGF, Bai Y, et al. Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant J., 2012, 71: 602-14
CrossRef Google scholar
Pino LE, Lombardi-Crestana S, Azevedo MS, Scotton DC, Borgo L, Quecini V, et al. The Rg1 allele as a valuable tool for genetic transformation of the tomato ‘Micro-Tom’ model system. Plant Methods, 2010, 6: 23
CrossRef Google scholar
Pino LE, Tulmann Neto A, Zsögön A, Piotto FA, Bernardi WF, Peres LEP, et al. Induced mutagenesis and natural genetic variation in tomato ‘Micro-Tom’. Acta Horticulturae. 2009;821:63–72. https://doi.org/10.17660/ActaHortic.2009.821.5
Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, et al. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development, 1998, 125: 1979-1989
CrossRef Google scholar
Reinhardt D, Kuhlemeier C. Plant architecture. EMBO Rep, 2002, 3: 846-851
CrossRef Google scholar
Rick CM. The tomato. Sci Am, 1978, 239: 76-87
CrossRef Google scholar
Rillig MC, Ramsey PW, Gannon JE, Mummey DL, Gadkar V, Kapulnik Y. Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant Soil. 2008;308:267–75. https://doi.org/10.1007/s11104-008-9629-x.
Robbins MD, Sim SC, Yang W, Van Deynze A, van der Knaap E, Joobeur T, et al. Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. J Exp Bot, 2011, 62: 1831-1845
CrossRef Google scholar
Robledo JM, Medeiros D, Vicente MH, Azevedo AA, Thompson AJ, Peres LEP, et al. Control of water-use efficiency by florigen. Plant Cell Environ, 2020, 43: 76-86
CrossRef Google scholar
Sack L, Scoffoni C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol, 2013, 198: 983-1000
CrossRef Google scholar
Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat Commun, 2012, 3: 837
CrossRef Google scholar
Scott JW, Harbaugh BK. Micro-Tom – a miniature dwarf tomato. Agricultural And Food Sciences. 1989.
Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y, et al. The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci U S A, 2009, 106: 8392-8397
CrossRef Google scholar
Shaul-Keinan O, Gadkar V, Ginzberg I, Grünzweig JM, Chet I, Elad Y, et al. Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol, 2002, 154: 501-507
CrossRef Google scholar
Shikata M, Ezura H. Micro-tom tomato as an alternative plant model system: mutant collection and efficient transformation. Methods Mol Biol, 2016, 1363: 47-55
CrossRef Google scholar
Shirasawa K, Ariizumi T. Near-complete genome assembly of tomato (Solanum lycopersicum) cultivar Micro-Tom. Plant Biotechnol, 2024, 41: 367-374
CrossRef Google scholar
Shiu SH, Lehti-Shiu MD. Assessing the evolution of research topics in a biological field using plant science as an example. PLoS Biol, 2024, 22: e3002612.
CrossRef Google scholar
Silva WB, Vicente MH, Robledo JM, Reartes DS, Ferrari RC, Bianchetti R, et al. SELF-PRUNING acts synergistically with DIAGEOTROPICA to guide auxin responses and proper growth form. Plant Physiol, 2018, 176: 2904-2916
CrossRef Google scholar
Sun HJ, Uchii S, Watanabe S, Ezura H. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol, 2006, 47: 426-431
CrossRef Google scholar
Sun Y, Shang L, Zhu QH, Fan L, Guo L. Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci, 2022, 27: 391-401
CrossRef Google scholar
Terashima I. Anatomy of nonuniform leaf photosynthesis. Photosynth Res, 1992, 31: 195-212
CrossRef Google scholar
Therezan R, Kortbeek R, Vendemiatti E, Legarrea S, de Alencar SM, Schuurink RC, et al. Introgression of the sesquiterpene biosynthesis from Solanum habrochaites to cultivated tomato offers insights into trichome morphology and arthropod resistance. Planta, 2021, 254: 11
CrossRef Google scholar
Thompson AJ, Andrews J, Mulholland BJ, McKee JM, Hilton HW, Horridge JS, et al. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol, 2007, 143: 1905-1917
CrossRef Google scholar
Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485: 635-641
CrossRef Google scholar
Tóth M, Tóth ZG, Fekete S, Szabó Z, Tóth Z. Improved and highly efficient agrobacterium rhizogenes-mediated genetic transformation protocol: efficient tools for functional analysis of root-specific resistance genes for Solanum lycopersicum cv. Micro-Tom Sustainability, 2022, 14: 6525
CrossRef Google scholar
Van Eck J. Genome editing and plant transformation of solanaceous food crops. Curr Opin Biotechnol, 2018, 49: 35-41
CrossRef Google scholar
Vendemiatti E, Therezan R, Vicente MH, Pinto MS, Bergau N, Yang L, et al. The genetic complexity of type-IV trichome development reveals the steps towards an insect-resistant tomato. Plants (Basel), 2022, 11: 1309
CrossRef Google scholar
Vendemiatti E, Hernández-De Lira IO, Snijders R, Torne-Srivastava T, Therezan R, Simioni Prants G, et al. Woolly mutation with the Get02 locus overcomes the polygenic nature of trichome-based pest resistance in tomato. Plant Physiol, 2024, 195: 911-923
CrossRef Google scholar
Vicente MH, Zsögön A, de Sá AFL, Ribeiro RV, Peres LEP. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum). J Plant Physiol, 2015, 177: 11-19
CrossRef Google scholar
Wang Y, He X, Yu F. Non-host plants: Are they mycorrhizal networks players? Plant Divers, 2021, 44: 127-134
CrossRef Google scholar
Xu J, van Herwijnen ZO, Dräger DB, Sui C, Haring MA, Schuurink RC. SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato glandular cells. Plant Cell, 2018, 30: 2988-3005
CrossRef Google scholar
Yang C, Marillonnet S, Tissier A. The scarecrow-like transcription factor SlSCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato (Solanum lycopersicum). Plant J, 2021, 107: 1102-1118
CrossRef Google scholar
Yeager AF. Determinate growth in the tomato. J Hered, 1927, 18: 263-265
CrossRef Google scholar
Zsögön A, Lambais MR, Benedito VA, de Oliveira Figueira AV, Peres LEP. Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants. Sci Agric, 2008, 65: 259-267
CrossRef Google scholar
Zsögön A, Alves Negrini AC, Peres LEP, Nguyen HT, Ball MC. A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum). New Phytol, 2015, 205: 618-626
CrossRef Google scholar
Zsögön A, Peres LEP. Molecular control of plant shoot architecture. Plant Cell. 2018;30:tpc.118.tt1218. https://doi.org/10.1105/tpc.118.tt1218.
Zwieniecki MA, Brodribb TJ, Holbrook NM. Hydraulic design of leaves: insights from rehydration kinetics. Plant, Cell & Environment. 2007;30:910-21. https://doi.org/10.1111/j.1365-3040.2007.001681.x.
Funding
Conselho Nacional de Desenvolvimento Científico e Tecnológico http://dx.doi.org/10.13039/501100003593(406455/2022-8); Funda??o de Amparo à Pesquisa do Estado de Minas Gerais http://dx.doi.org/10.13039/501100004901(BPD-00823-22)

Accesses

Citations

Detail

Sections
Recommended

/