In vitro slow-growth conservation, acclimatization, and genetic stability of virus-free apple plants
Xian Lu , Pengpeng Sun , Ruihan Liu , Caiwen Wang , Lu Tong , Muhammad Mobeen Tahir , Xiaoyan Ma , Junhua Bao , Dong Zhang , Minrui Wang , Na An
Horticulture Advances ›› 2024, Vol. 2 ›› Issue (1) : 30
In vitro slow-growth conservation, acclimatization, and genetic stability of virus-free apple plants
In vitro slow-growth storage has long played an important role in maintaining valuable horticultural materials. It is particularly applicable to the conservation of virus-free materials recovered from meristem culture or shoot-tip cryotherapy. In this study, the apple cultivar ‘Yanfu-6’ and the rootstock genotype ‘Qingzhen-1’ obtained from a virus disinfection program were compared during the establishment of in vitro slow-growth storage programs. At room temperature (25℃), combining with 4.5% sucrose or 0.5% mannitol, extended the conservation period of ‘Yanfu-6’ and ‘Qingzhen-1’to 5 and 9 months, respectively. Decreasing the temperature to 12℃ led to further reduced shoot growth, extending the conservation period to 9 months for ‘Yanfu-6’, while more than 80% of ‘Qingzhen-1’ shoots could be recovered after one year of storage. Similarly, high rooting and acclimatization success levels were obtained for ‘Qingzhen-1’ after one-year storage at 12℃, as well as for the plants that underwent monthly subcultures, but not for ‘Yanfu-6’. The inability to root in ‘Yanfu-6’ was overcome by micrografting onto rootstock ‘Qingzhen-1’, which resulted in a rooting percentage of 83% and an acclimatization success of 77%. In the analysis of genetic stability by next-generation sequencing, reduced levels of single nucleotide polymorphism (SNPs) and insertions and deletions (InDels) were detected in ‘Qingzhen-1’ shoots recovered after one-year storage at 12℃, as compared with shoots that underwent regular subcultures. These results highlight the use of in vitro slow-growth program assisted with micrografting for the conservation of valuable horticultural species.
Genetic stability / Malus / Mannitol / Rooting analysis / Slow-growth conservation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Food and Agriculture Organization of the United Nations. FAOSTAT. 2021. https://www.fao.org/faostat/en/#data/QC. Accessed 26 June 2023. |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
Srivastava M, Purshottam DK, Srivastava AK, Misra P. In vitro conservation of Glycyrrhiza glabra by slow growth culture. Tjprc Org. 2013;3:49–58. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
/
| 〈 |
|
〉 |