Identification of distinct roses suitable for future breeding by phenotypic and genotypic evaluations of 192 rose germplasms

Huilin Guan1(), Bingyao Huang1(), Xinyue Yan1(), Jiaxing Zhao1(), Shaozong Yang1(), Quanshu Wu1(), Manzhu Bao1(), Mohammed Bendahmane1,2(), Xiaopeng Fu1()()

PDF
Horticulture Advances ›› 2024, Vol. 2 ›› Issue (1) : 5. DOI: 10.1007/s44281-023-00024-1

Identification of distinct roses suitable for future breeding by phenotypic and genotypic evaluations of 192 rose germplasms

  • Huilin Guan1(), Bingyao Huang1(), Xinyue Yan1(), Jiaxing Zhao1(), Shaozong Yang1(), Quanshu Wu1(), Manzhu Bao1(), Mohammed Bendahmane1,2(), Xiaopeng Fu1()()
Author information +
History +

Abstract

Rose ( Rosa) is a prominent ornamental plant that holds substantial economic and social significance. Roses originating from different regions exhibit intricate phenotypic and genetic characteristics, but the majority of rose genetic resources are poorly characterized. In this study, 192 genotypes of the genus Rosa were examined using 33 phenotypic traits and 10 pairs of SSR markers. Compared to wild species, both old garden and modern roses exhibited a significant level of diversity, with flower color having the highest degree of diversity and style morphology having the lowest degree of diversity. This phenomenon may be attributed to the limited utilization of wild roses due to their simpler ornamental traits and the frequent phenotypic and molecular infiltration between old garden roses and modern roses. Following a inaugural comprehensive evaluation employing principal component analysis, R. chinensis ‘Zihongxiang’, R. hybrida ‘Burgundy Iceberg’, R. hybrida ‘Conrad F. Meyer’, R. rugosa ‘Gaohong’ and R. floribunda ‘Sheherazad’ were selected as core germplasm resources for future breeding. Moreover, three tetraploid roses, namely R. hybrida ‘Midnight Blue’, R. floribunda ‘Sheherazad’, and R. hybrida ‘Couture Rose Tilia’, with significant differences in both phenotypic and molecular profiles were selected and reciprocally intercrossed. Ultimately, two populations were obtained exhibiting significant variation in flower size, annual stem color, stem pickle density, and leaf number. Furthermore, our results indicated that the traits of flower diameter, flower height, petal width, and petal number may potentially be controlled by two major-effect loci. In conclusion, this study provides novel insights into the evolutionary patterns of Rosa germplasm resources. It paves the way for identifying core genotypes that carry distinct ornamental characteristics and possess immense value for breeding novel varieties in the future.

Keywords

Rosa sp. / Phenotypic traits / Genetic diversity / Principal component analysis / Tetraploid

Cite this article

Download citation ▾
Huilin Guan, Bingyao Huang, Xinyue Yan, Jiaxing Zhao, Shaozong Yang, Quanshu Wu, Manzhu Bao, Mohammed Bendahmane, Xiaopeng Fu. Identification of distinct roses suitable for future breeding by phenotypic and genotypic evaluations of 192 rose germplasms. Horticulture Advances, 2024, 2(1): 5 https://doi.org/10.1007/s44281-023-00024-1

References

[1]
Amar MH, Biswas MK, Zhang ZW, Guo WW. Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of Citrus germplasm collection. Sci Hortic. 2011;128:220–7. https://doi.org/10.1016/j.scienta.2011.01.021.
[2]
Bai M, Liu J, Fan C, Chen Y, Chen H, Lu J, et al. KSN heterozygosity is associated with continuous flowering of Rosa rugosa Purple branch. Hort Res. 2021;8:26. https://doi.org/10.1038/s41438-021-00464-8.
[3]
Basu SK, Zandi P, Cetzal-Ix W, Sengupta R. The genus Rosa: An aristocrat from the plant family with class, color and fragrance. Iran Soc Environ. 2015.
[4]
Behe B, Nelson R, Barton S, Hall C, Safley CD, Turner S. Consumer preferences for geranium flower color, leaf variegation, and price. HortScience. 1999;34:740–2. https://doi.org/10.21273/HORTSCI.34.4.740.
[5]
Bendahmane M, Dubois A, Raymond O, Bris ML. Genetics and genomics of flower initiation and development in roses. J Exp Bot. 2013;64:847–57. https://doi.org/10.1093/jxb/ers387.
[6]
Ben-Meir H, Vainstein A. Assessment of genetic relatedness in roses by DNA fingerprint analysis. Sci Hortic. 1994;58:115–21. https://doi.org/10.1016/0304-4238(94)90132-5.
[7]
Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–31.
[8]
Calle A, Balas F, Cai L, Iezzoni A, López-Corrales M, Serradilla MJ, et al. Fruit size and firmness QTL alleles of breeding interest identified in a sweet cherry ‘Ambrunés’ × ‘Sweetheart’ population. Mol Breed. 2020;4086. https://doi.org/10.1007/s11032-020-01165-1.
[9]
Cao Y, Wang GY, Wang SC, Wei YL, Lu J, Xie YJ, et al. Construction of a genetic map and location of quantitative trait loci for dwarf trait in maize by RFLP markers. Chi Sci Bull. 2000;45:247–50. https://doi.org/10.1007/BF02884683.
[10]
Chaanin A. Breeding| Selection strategies for cut roses. In: Roberts AV, Debener T, Gudin S, editors. Encyclopedia of rose science. Oxford, UK: Elsevier Ltd; 2003. p. 33–41. https://doi.org/10.1016/b0-12-227620-5/00099-9.
[11]
Chen F, Su LY, Hu SY, Xue JY, Liu H, Liu GH, et al. A chromosome-level genome assembly of rugged rose (Rosa rugosa) provides insights into its evolution, ecology, and floral characteristics. Hort Res. 2021;8:141. https://doi.org/10.1038/s41438-021-00594-z.
[12]
Cheng JS. Genetic breeding of garden plants. 1rded. Beijing: China Forestry Publishing House; 2000.
[13]
Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature. 1991;353:31–7. https://doi.org/10.1038/353031a0.
[14]
Crespel L, Mouchotte J. Methods of cross-breeding. In: Roberts AV, Debener T, Gudin S, editors. Encyclopedia of rose science. Oxford, UK: Elsevier Ltd; 2003. p. 30–3. https://doi.org/10.1016/B978-0-12-809633-8.05005-6.
[15]
Datta SK. Breeding of new ornamental varieties:rose. Curr Sci. 2018;114:1194–206. https://doi.org/10.18520/cs/v114/i06/1194-1206.
[16]
Davies KM, Albert NW, Schwinn KE. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol. 2012;39:619–38. https://doi.org/10.1071/FP12195.
[17]
De Vries DP, Dubois LAM. Rose breeding: past, present, prospects. Acta Hortic. 1996;424:241–8. https://doi.org/10.17660/ActaHortic.1996.424.43.
[18]
Debener T, Linde M. Exploring complex ornamental genomes: the rose as a model plant. Crit Rev Plant Sci. 2009;28:267–80. https://doi.org/10.1080/07352680903035481.
[19]
Debener T, Von Malek B, Mattiesch L, Kaufmann H. Genetic and molecular analysis of important characyers in rose. Acta Hortic. 2001;547:45–9. https://doi.org/10.17660/ActaHortic.2001.547.5.
[20]
Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26:297–302. https://doi.org/10.2307/1932409.
[21]
Diday E, Simon JC. Clustering Analysis. In: Fu KS, editor. Digital pattern recognition. Berlin, Heidelberg: Springer; 1976. p. 47–94. https://doi.org/10.1007/978-3-642-96303-2_3.
[22]
Francois L, Verdenaud M, Fu XP, Ruleman D, Dubois A, Vandenbussche M, et al. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses. Sci Rep. 2018;8:12912. https://doi.org/10.1038/s41598-018-30918-4.
[23]
Gai J, Zhang Y, Wang J. Genetic system of quantitative traits in plant. Beijing: Science Press; 2003.
[24]
Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK. Accessing genetic diversity for crop improvement. Curr Opin Plant Biol. 2010;13:167–73. https://doi.org/10.1016/j.pbi.2010.01.004.
[25]
Gulsen O, Karagul S, Abak K. Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia. 2007;62:41–5. https://doi.org/10.2478/s11756-007-0010-y.
[26]
Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat Plants. 2018;4:473–84. https://doi.org/10.1038/s41477-018-0166-1.
[27]
Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes. 2008;4:11–23. https://doi.org/10.1007/s11295-007-0084-2.
[28]
Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, et al. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J. 2012;69:116–25. https://doi.org/10.1111/j.1365-313X.2011.04776.x.
[29]
Jian HY, Zhang T, Wang QG, Li SB, Zhang H, Tang KX. Karyological diversity of wild Rosa in Yunnan, southwestern China. Genet Resour Crop Ev. 2013;60:115–27. https://doi.org/10.1007/s10722-012-9820-z.
[30]
Jin N, Jin L, Luo S, Tang Z, Liu Z, Wei S, et al. Comprehensive evaluation of amino acids and polyphenols in 69 varieties of green cabbage (Brassica oleracea L. var. capitata L.) based on multivariate statistical analysis. Molecules. 2021;26:5355. https://doi.org/10.3390/molecules26175355.
[31]
Kitahara K, Hibino Y, Aida R, Matsumoto S. Ectopic expression of the rose AGAMOUS-like MADS-box genes ‘MASAKO C1 and D1’ causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia. Plant Sci. 2004;166:1245–52. https://doi.org/10.1016/j.plantsci.2003.12.040.
[32]
Kurokura T, Mimida N, Battey NH, Hyt?nen T. The regulation of seasonal flowering in the Rosaceae. J Exp Bot. 2013;64:4131–41. https://doi.org/10.1093/jxb/ert233.
[33]
Lau J, Young EL, Collins S, Windham MT, Klein PE, Byrne DH, et al. Rose rosette disease resistance loci detected in two interconnected tetraploid garden rose populations. Front Plant Sci. 2022;13:916231. https://doi.org/10.3389/fpls.2022.916231.
[34]
Li XW. Two big biodiversity centers of Chinese endemic genera of seed plants and their characteristics in Yunnan province. Acta Bot Yunnanica. 1994;16:221–7.
[35]
Lidia A, Irina SN. Theoretical considerations upon the origin and the origin and nomenclature of the present rose cultivars. J Plant Dev. 2009;16:103–8.
[36]
Linde M, Hattendorf A, Kaufmann H, Debener T. Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. Thero Appl Genet. 2006;113:1081–92. https://doi.org/10.1007/s00122-006-0367-2.
[37]
Liorzou M, Pernet A, Li S, Chastellier A, Thouroude T, Michel G, et al. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background. J Exp Bot. 2016;67:4711–25. https://doi.org/10.1093/jxb/erw269.
[38]
Liu ZZ, Guo RH, Zhao JR, Cai YL, Wang FG, Cao MJ, et al. Genetic diversity of two important groups of maize landraces with same name in China revealed by M13 tailed-primer SSRs. Agr Sci China. 2009;8:15–23. https://doi.org/10.1016/s1671-2927(09)60004-3.
[39]
Liu Y, Chen T, Zhang J, Wang J, Wang H, Tang HR, et al. Genetic diversity analysis of Chinese cherry landraces (Prunus pseudocerasus) based on phenotypic traits. Acta Hortic Sin. 2016;43:2119–32. https://doi.org/10.16420/j.issn.0513-353x.2016-0092.
[40]
Liu MJ. Studies on the variations and probability gradings of major quantitative characters of Chinese jujube. Acta Hortic Sin. 1996:105-9.
[41]
Meng J, Li DZ, Yi TS, Yang JB, Zhao XF. Development and characterization of microsatellite loci for Rosa odorata var. gigantea Rehder & E. H. Wilson (Rosaceae). Conserv Genet. 2009;10:1973–6. https://doi.org/10.1007/s10592-009-9871-7.
[42]
Meng J, Fougere-Danezan M, Zhang LB, Li DZ, Yi TS. Untangling the hybrid origin of the Chinese tea roses: evidence from DNA sequences of single-copy nuclear and chloroplast genes. Plant Syst Evol. 2011;297:157–70. https://doi.org/10.1007/s00606-011-0504-5.
[43]
Nadeem M, Wang X, Akond M, Awan FS, Riaz A, Younis A. Hybrid identification, morphological evaluation and genetic diversity analysis of Rosa × hybrida by SSR markers. Aust J Crop Sci. 2014;8:183–90. https://doi.org/10.3316/informit.197817439482917.
[44]
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979;76:2569–5273. https://doi.org/10.1073/pnas.76.10.5269.
[45]
Nybom H. Introduction to Rosa. In: Folta KM, Gardiner SE, editors. Genetics and genomics of Rosaceae. New York: Springer; 2009. p. 339–51. https://doi.org/10.1007/978-0-387-77491-6_16.
[46]
Panwar S, Singh KP, Namita N, Sonah H, Deshmukh R, Sharma T. Identification and characterization of microsatellites in ESTs of Rosa species: insight in development of SSR markers. Indian J Agric Sci. 2015;85:429–33. https://doi.org/10.56093/ijas.v85i3.47189.
[47]
Qi WC, Chen X, Fang PH, Shi SC, Li JJ, Liu XT, et al. Genomic and transcriptomic sequencing of Rosa hybrida provides microsatellite markers for breeding, flower trait improvement and taxonomy studies. BMC Plant Biol. 2018;18:119. https://doi.org/10.1186/s12870-018-1322-5.
[48]
Rawandoozi Z, Young EL, Liang SY, Wu X, Fu QY, Hochhaus T, et al. Pedigree-based QTL analysis of flower size traits in two multi-parental diploid rose populations. Front Plant Sci. 2023;14:1226713. https://doi.org/10.3389/fpls.2023.1226713.
[49]
Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, et al. The Rosa genome provides new insights into the domestication of modern roses. Nat Genet. 2018;50:772–7. https://doi.org/10.1038/s41588-018-0110-3.
[50]
Ringnér M. What is principal component analysis. Nat Biotechnol. 2008;26:303–4. https://doi.org/10.1038/nbt0308-303.
[51]
Roman H, Rapicault M, Miclot AS, Larenaudie M, Kawamura K, Thouroude T, et al. Genetic analysis of the flowering date and number of petals in rose. Tree Genet Genomes. 2015;11:85. https://doi.org/10.1007/s11295-015-0906-6.
[52]
Rui WJ, Wang XM, Zhang QN, Hu XY, Hu XH, Fu JJ, et al. Genetic diversity analysis of 353 tomato germplasm resources by phenotypic traits. Acta Hortic Sin. 2018;45:561–70. https://doi.org/10.16420/j.issn.0513-353x.2017-0274.
[53]
Scariot V, Akkak A, Botta R. Characterization and genetic relationships of wild species and old garden roses based on microsatellite analysis. J Am Sor Hortic. 2006;131:66–73. https://doi.org/10.21273/JASHS.131.1.66.
[54]
Schulz D, Linde M, Debener T. Detection of reproducible major effect QTL for petal traits in garden roses. Plants. 2021;10:897. https://doi.org/10.3390/plants10050897.
[55]
Sensoy S, Büyükalaca S, Abak K. Evaluation of genetic diversity in Turkish melons (Cucumis melo L.) based on phenotypic characters and RAPD markers. Genet Resour Crop Ev. 2007;54:1351–65. https://doi.org/10.1007/s10722-006-9120-6.
[56]
Shi P, Xu Z, Zhang SY, Wang XJ, Ma XF, Zheng JC, et al. Construction of a high-density SNP-based genetic map and identification of fruit-related QTLs and candidate genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biol. 2020;20:438. https://doi.org/10.1186/s12870-020-02557-3.
[57]
Shupert DA, Byrne DH, Brent Pemberton H. Inheritance of flower traits, leaflet mumber and prickles in roses. Acta Hortic. 2007;751:331–5. https://doi.org/10.17660/ActaHortic.2007.751.42.
[58]
Silberstein L, Kovalski I, Brotman Y, Perin C, Dogimont C, Pitrat M, et al. Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome. 2003;46:761–73. https://doi.org/10.1139/g03-060.
[59]
Singh N, Vasudev S, Kumar Yadava D, Kumar S, Naresh S, Ramachandra Bhat S, et al. Assessment of genetic diversity in Brassica juncea (Brassicaceae) genotypes using phenotypic differences and SSR markers. Rev Biol Trop. 2013;61:1919–34. https://doi.org/10.56093/ijas.v91i6.114299.
[60]
Smulders MJM, Arens P, Bourke P, Debener T, Linde M, Riek J, et al. In the name of the rose: a roadmap for rose research in the genome era. Hort Res. 2019;6:65. https://doi.org/10.1038/s41438-019-0156-0.
[61]
Soleimani VD, Baum BR, Johnson DA. AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp durum (Desf.) Husn.]. Thero Appl Genet. 2002;104:350–7. https://doi.org/10.1007/s001220100714.
[62]
Tan JR, Wang J, Luo L, Yu C, Xu TL, Wu YY, et al. Genetic relationships and evolution of old Chinese garden roses based on SSRs and chromosome diversity. Sci Rep. 2017;7:15437. https://doi.org/10.1038/s41598-017-15815-6.
[63]
Tang KX, Qiu XQ, Zhang H, Li SF, Wang QG, Jian HY, et al. Study on genetic diversity of some Rosa germplasm in Yunnan based on SSR markers. Acta Hortic Sin. 2008;35:1227–32.
[64]
Tena Gashaw E, Mekbib F, Ayana A. Genetic diversity among sugarcane genotypes based on qualitative traits. Adv Agri. 2016;148:8909506. https://doi.org/10.1155/2016/8909506.
[65]
Wan HH, Yu C, Han Y, Guo XL, Luo L, Pan HT, et al. Determination of flavonoids and carotenoids and their contributions to various colors of rose cultivars (Rosa spp.). Front Plant Sci. 2019;10:123. https://doi.org/10.3389/fpls.2019.00123.
[66]
Wang Y, Ma Y, Dai S. The molecular mechanism in regulation of flowering in ornamental plants. J Integr Plant Biol. 2010;45:641–53. https://doi.org/10.3969/j.issn.1674-3466.2010.06.001.
[67]
Wang JT, Zhang YW, Du YW, Ren WL, Li HF, Sun WX, et al. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits. Acta Agron Sin. 2022;48:1416–24. https://doi.org/10.3724/SP.J.1006.2022.14088.
[68]
Wang Y, Liu ZS, Yang XQ, Wang ZY, Ma L, Tu HX, et al. Inheritance analysis of fruit-related traits in Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don] breeding progenies. Sci Hortic. 2023;307:111519.
[69]
Weigel D, Meyerowitz EM. The ABCs of floral homeotic genes. Cell. 1994;78:203–9. https://doi.org/10.1016/0092-8674(94)90291-7.
[70]
Wijayani A, Muafi M, Sukwadi R. Market actor’s response towards flower colours in determining the economic value of Chrysanthemum flowers. J Bus Retal Manag Res. 2017;12:69–75. https://doi.org/10.24052/jbrmr/v12is01/martfcidtevocf.
[71]
Wissemann V. Conventional taxonomy (wild roses). In: Roberts AV, Debener T, Gudin S, editors. Reference module in life sciences. Elsevier; 2017. p. 1–6. https://doi.org/10.1016/B978-0-12-809633-8.05017-2.
[72]
Yaghini H, Shirani M, Archangi A, Sorkheh K, Chaleshtori SB, Sangi SE, et al. Phenotypic diversity and relationships of fruit quality traits in inter-specific almond × peach backcrosses breeding progenies. Euphytica. 2013;194:305–24. https://doi.org/10.1007/s10681-013-0893-3.
[73]
Yan YH, Zhao JX, Lin SN, Li ML, Liu JY, Raymond O, et al. Light-mediated anthocyanin biosynthesis in rose petals involves a balanced regulatory module comprising transcription factors RhHY5, RhMYB114a, and RhMYB3b. J Exp Bot. 2023;74:5783–804. https://doi.org/10.1093/jxb/erad253.
[74]
Yanchuk AD. A quantitative framework for breeding and conservation of forest tree genetic resources in British Columbia. Can J For Res. 2001;31:566–76. https://doi.org/10.1139/x00-133.
[75]
Yang CY, Ma YJ, Cheng BX, Zhou LJ, Yu C, Luo L, et al. Molecular evidence for hybrid origin and phenotypic variation of Rosa section Chinenses. Genes. 2020;11:996. https://doi.org/10.3390/genes11090996.
[76]
Yirgu M, Kebede M, Feyissa T, Lakew B, Woldeyohannes AB. Morphological variations of qualitative traits of barley (Hordeum vulgare L.) accessions in Ethiopia. Heliyon. 2022;8:e10949.
[77]
Yu R, Xiong ZY, Zhu XH, Feng PP, Hu ZY, Fang RX, et al. RcSPL1–RcTAF15b regulates the flowering time of rose (Rosa chinensis). Hort Res. 2023;10:uhad083. https://doi.org/10.1093/hr/uhad083.
[78]
Zhang LH, Byrne DH, Ballard RE, Rajapakse S. Microsatellite marker development in rose and its application in tetraploid mapping. J Am Soc Hortic Sci. 2006;131:380–7. https://doi.org/10.21273/JASHS.131.3.380.
[79]
Zhao L, Zhang D. Ornamental plant resources from China. Acta Hortic. 2003;620:365–75. https://doi.org/10.17660/ActaHortic.2003.620.46.
[80]
Zieliński J, Tomaszewski D, Guzicka M, Maciejewska-Rutkowska I. Stomata on the pericarp of species of the genus Rosa L. (Rosaceae). Plant Syst Evol. 2010;284:49–55. https://doi.org/10.1007/s00606-009-0234-0.
[81]
Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994;20:176–83. https://doi.org/10.1006/geno.1994.1151.
[82]
Zlesak DC. Rose. In: Anderson NO, editor. Flower Breeding and Genetics. Dordrecht: Springer; 2006. p. 695–740. https://doi.org/10.1007/978-1-4020-4428-1.
Funding
National Natural Science Foundation of China(32072607)
PDF

Accesses

Citations

Detail

Sections
Recommended

/