Structural dimension optimization and mechanical response analysis of fabricated honeycomb plastic pavement slab

Zixuan CHEN , Tao LIU , Xiao MA , Hanyu TANG , Jianyou HUANG , Jianzhong PEI

Front. Struct. Civ. Eng. ›› 2022, Vol. 16 ›› Issue (7) : 896 -908.

PDF (5895KB)
Front. Struct. Civ. Eng. ›› 2022, Vol. 16 ›› Issue (7) : 896 -908. DOI: 10.1007/s11709-022-0856-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural dimension optimization and mechanical response analysis of fabricated honeycomb plastic pavement slab

Author information +
History +
PDF (5895KB)

Abstract

Because of favorable mechanical properties, deformation resistance and being conducive to environmental protection, honeycomb fabricated plastic pavement slabs are highly recommended these years. At present, most studies focus on the performance of plastic materials, however, the dimension optimization of fabricated plastic pavement slab is rarely mentioned. In this paper, an optimized geometry of the honeycomb pavement slab was determined through finite element analysis. Mechanical response of honeycomb slabs with different internal dimensions and external dimensions were explored. Several dimension factors were taken into consideration including the side length, rib thickness, the thickness of both top and bottom slabs of honeycomb structure and the length, the width and the thickness of the fabricated plastic slab. The results showed that honeycomb pavement slab with 6 cm bottom slab, 12 cm top slab,18 cm side length and 6 cm rib thickness is recommended, additionally, an external dimension of 4 m × 4 m × 0.45 m is suggested. Then, the mechanical responses of this optimized fabricated plastic slab were further investigated. Significance of different influencing factors, including wheel load, elastic modulus of plastic material, base layer thickness, soil foundation modulus and base layer modulus were ranked.

Graphical abstract

Keywords

honeycomb structure / plastic pavement / dimension optimization / mechanical response / factor significance

Cite this article

Download citation ▾
Zixuan CHEN, Tao LIU, Xiao MA, Hanyu TANG, Jianyou HUANG, Jianzhong PEI. Structural dimension optimization and mechanical response analysis of fabricated honeycomb plastic pavement slab. Front. Struct. Civ. Eng., 2022, 16(7): 896-908 DOI:10.1007/s11709-022-0856-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heacock M, Kelly C B, Asante K A, Birnbaum L S, BergmanÅ L, Bruné M N, Buka I, Carpenter D O, Chen A, Huo X, Kamel M, Landrigan P J, Magalini F, Diaz-Barriga F, Neira M, Omar M, Pascale A, Ruchirawat M, Sly L, Sly P D, Van den Berg M, Suk W A. E-waste and harm to vulnerable populations: A growing global problem. Environmental Health Perspectives, 2016, 124(5): 550–555

[2]

Wang W, Themelis N J, Sun K, Bourtsalas A C, Huang Q, Zhang Y, Wu Z. Current influence of China’s ban on plastic waste imports. Waste Disposal and Sustainable Energy, 2019, 1(1): 67–78

[3]

Van Sebille E, Spathi C, Gilbert A. The ocean plastic pollution challenge: Towards solutions in the UK. Grantham Institute Briefing paper, 2016, 19(02): 1–16

[4]

Chen S, Zhang Y, Guo C, Zhong Y, Wang K, Wang H. Separation of polyvinyl chloride from waste plastic mixtures by froth flotation after surface modification with sodium persulfate. Journal of Cleaner Production, 2019, 218: 167–172

[5]

Zhou H, Long Y, Meng A, Li Q H, Zhang Y G. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Management (New York, N.Y.), 2015, 38(5): 194–200

[6]

Leal Filho W, Saari U, Fedoruk M, Iital A, Moora H, Klöga M, Voronova V. An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. Journal of Cleaner Production, 2019, 214: 550–558

[7]

He P, Chen L, Shao L, Zhang H, F. Solid waste (MSW) landfill: A source of microplastics? Evidence of microplastics in landfill leachate.. Water Research, 2019, 159: 38–45

[8]

Khoo H H. LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resources, Conservation and Recycling, 2019, 145: 67–77

[9]

Duggal P, Shisodia A S, Havelia S, Jolly K. Use of waste plastic in wearing course of flexible pavement. Advances in Structural Engineering and Rehabilitation, 2020, 38: 177–187

[10]

ChinCDamen P. Viability of using recycled plastics in asphalt and sprayed sealing applications. Sydney, Australia, Austroads Publication. No. AP-T351–19, 2019

[11]

Sw A, Lm B. Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review. Journal of Cleaner Production, 2021, 280: 124355

[12]

Gautam P K, Kalla P, Jethoo A S, Agrawal R, Singh H. Sustainable use of waste in flexible pavement: A review. Construction & Building Materials, 2018, 180(2): 239–253

[13]

Bansal S, Kumar Misra A, Bajpai P. Evaluation of modified bituminous concrete mix developed using rubber and plastic waste materials. International Journal of Sustainable Built Environment, 2017, 6(2): 442–448

[14]

Al-Hadidy A, Tan Y. Effect of polyethylene on life of flexible pavements. Construction & Building Materials, 2009, 23(3): 1456–1464

[15]

Behl A, Sharma G, Kumar G. A sustainable approach: Utilization of waste PVC in asphalting of roads. Construction & Building Materials, 2014, 54(4): 113–117

[16]

Haider S, Hafeez I, Jamal R. Sustainable use of waste plastic modifiers to strengthen the adhesion properties of asphalt mixtures. Construction & Building Materials, 2020, 235(6): 117–496

[17]

Vasudevan R, Rajasekaran S, Saravanavel S. Reuse of waste plastics for road laying. Indian Highways (Indian Roads Congress), 2006, 34(7): 5–20

[18]

Vasudevan R, Ramalinga Chandra Sekar A, Sundarakannan B, Velkennedy R. A technique to dispose waste plastics in an ecofriendly way—Application in construction of flexible pavements. Construction & Building Materials, 2012, 28(1): 311–320

[19]

Zhou B, Pei J, Hughes B R, Nasir D S N M, Zhang J. Analysis of mechanical properties for two different structures of photovoltaic pavement unit block. Construction & Building Materials, 2020, 239(04): 117–864

[20]

ZhaXZhangC WuZZhangQ. Mechanical analysis and model preparation for hollow slab element of solar pavement. Acta Energiae Solaris Sinica, 2016, 37(2): 136–141 (in Chinese)

[21]

AshtianiR SJackson C JSaeedAHammonsM I. Pre-Cast Concrete Panels for Contingency Rigid Airfield Pavement Damage Repairs. Panama City: Applied Research Associates Inc Panama City FL, 2010

[22]

Priddy L P, Jersey S R, Reese C M. Full-scale field testing for injected foam stabilization of Portland cement concrete repairs. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2155(1): 24–33

[23]

DavalosJ FQiao PFrank XuXRobinsonJBarthK E. Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications. Composite Structures, 2001, 52(3−4): 441−452

[24]

Ryzhenkov A V, Lapin E E, Loginova N A, Sitdikov D R, Grigor’ev S V. Evaluation of the thermal efficiency of a high-temperature heat-insulation structure based on honeycomb plastic. Thermal Engineering, 2016, 63(6): 445–448

[25]

Zhang J, Fan Z, Wang H, Sun W, Pei J, Wang D. Prediction of dynamic modulus of asphalt mixture using micromechanical method with radial distribution functions. Materials and Structures, 2019, 52(2): 49

[26]

Lye L, Dong Y, Zhao D, Wen Y. Mechanical and acoustic properties composition design and effects analysis of poroelastic road surface (PERS). Journal of Materials in Civil Engineering, 2021, 33(10): 04021281

[27]

Zhang J, Tan H, Pei J, Qu T, Liu W. Evaluating crack resistance of asphalt mixture based on essential fracture energy and fracture toughness. International Journal of Geomechanics, 2019, 19(4): 06019005

[28]

Zhang Y, Ma T, Ling M, Huang X. Mechanistic sieve size classification of aggregate gradation by characterizing load carrying capacity of inner structures. Journal of Engineering Mechanics, 2019, 145(9): 04019069

RIGHTS & PERMISSIONS

Higher Education Press 2022

AI Summary AI Mindmap
PDF (5895KB)

6025

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/