Effect of styrene-butadiene-styrene copolymer on the aging resistance of asphalt: An atomistic understanding from reactive molecular dynamics simulations

Dongliang Hu , Xingyu Gu , Bingyan Cui

Front. Struct. Civ. Eng. ›› 2021, Vol. 15 ›› Issue (5) : 1261 -1276.

PDF (16846KB)
Front. Struct. Civ. Eng. ›› 2021, Vol. 15 ›› Issue (5) : 1261 -1276. DOI: 10.1007/s11709-021-0761-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of styrene-butadiene-styrene copolymer on the aging resistance of asphalt: An atomistic understanding from reactive molecular dynamics simulations

Author information +
History +
PDF (16846KB)

Abstract

To reveal the potential influence of styrene-butadiene-styrene (SBS) polymer modification on the anti-aging performance of asphalt, and its mechanism, we explored the aging characteristics of base asphalt and SBS-modified asphalt by reaction force field (ReaxFF) and classical molecular dynamics simulations. The results illustrate that the SBS asphalt is more susceptible to oxidative aging than the base asphalt under oxygen-deficient conditions due to the presence of unsaturated C=C bonds in the SBS polymer. In the case of sufficient oxygen, the SBS polymer inhibits the oxidation of asphalt by restraining the diffusion of asphalt molecules. Compared with the base asphalt, the SBS asphalt exhibits a higher degree of oxidation at the early stage of pavement service and a lower degree of oxidation in the long run. In addition, SBS polymer degrades into small blocks during aging, thus counteracting the hardening of aged asphalt and partially restoring its low-temperature cracking resistance.

Graphical abstract

Keywords

SBS asphalt / oxidative aging / asphalt hardening / ReaxFF / molecular dynamics

Cite this article

Download citation ▾
Dongliang Hu, Xingyu Gu, Bingyan Cui. Effect of styrene-butadiene-styrene copolymer on the aging resistance of asphalt: An atomistic understanding from reactive molecular dynamics simulations. Front. Struct. Civ. Eng., 2021, 15(5): 1261-1276 DOI:10.1007/s11709-021-0761-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Poulikakos L, Wang D, Porot L, Hofko B. Impact of asphalt aging temperature on chemo-mechanics. RSC Advances, 2019, 9( 21): 11602– 11613

[2]

Mirwald J, Werkovits S, Camargo I, Maschauer D, Hofko B, Grothe H. Understanding bitumen ageing by investigation of its polarity fractions. Construction & Building Materials, 2020, 250 : 118809–

[3]

Pahlavan F, Hung A M, Zadshir M, Hosseinnezhad S, Fini E H. Alteration of π-electron distribution to induce deagglomeration in oxidized polar aromatics and asphaltenes in an aged asphalt binder. ACS Sustainable Chemistry & Engineering, 2018, 6( 5): 6554– 6569

[4]

Zhang J, Tan H, Pei J, Qu T, Liu W. Evaluating crack resistance of asphalt mixture based on essential fracture energy and fracture toughness. International Journal of Geomechanics, 2019, 19( 4): 06019005–

[5]

Mousavi M, Pahlavan F, Oldham D, Hosseinnezhad S, Fini E H. Multiscale investigation of oxidative aging in biomodified asphalt binder. Journal of Physical Chemistry C, 2016, 120( 31): 17224– 17233

[6]

Onifade I, Dinegdae Y, Birgisson B. Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements. Frontiers of Structural and Civil Engineering, 2017, 11( 3): 257– 269

[7]

Lyu L, Li D, Chen Y, Tian Y, Pei J. Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer. Construction & Building Materials, 2021, 293 : 123480–

[8]

Leng Z, Padhan R K, Sreeram A. Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. Journal of Cleaner Production, 2018, 180 : 682– 688

[9]

Guo F, Zhang J, Pei J, Ma W, Hu Z, Guan Y. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation. Frontiers of Structural and Civil Engineering, 2020, 14( 2): 435– 445

[10]

Sugano M, Iwabuchi Y, Watanabe T, Kajita J, Iwata K, Hirano K. Relations between thermal degradations of SBS copolymer and asphalt substrate in polymer modified asphalt. Clean Technologies and Environmental Policy, 2010, 12( 6): 653– 659

[11]

Cong P, Zhang Y, Liu N. Investigation of the properties of asphalt mixtures incorporating reclaimed SBS modified asphalt pavement. Construction & Building Materials, 2016, 113 : 334– 340

[12]

Zhang H, Chen Z, Xu G, Shi C. Evaluation of aging behaviors of asphalt binders through different rheological indices. Fuel, 2018, 221 : 78– 88

[13]

Sun L, Wang Y, Zhang Y. Aging mechanism and effective recycling ratio of SBS modified asphalt. Construction & Building Materials, 2014, 70 : 26– 35

[14]

Woo W J, Hilbrich J M, Glover C J. Loss of polymer-modified binder durability with oxidative aging: Base binder stiffening versus polymer degradation. Transportation Research Record: Journal of the Transportation Research Board, 2007, 1998( 1): 38– 46

[15]

Petersen J C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships. Washington, D.C.: Transportation Research Circular, 2009, E-C140

[16]

Cui B, Gu X, Wang H, Hu D. Numerical and experimental evaluation of adhesion properties of asphalt-aggregate interfaces using molecular dynamics simulation and atomic force microscopy. Road Materials and Pavement Design, 2021, 1– 21

[17]

Zhao X, Wang S, Wang Q, Yao H. Rheological and structural evolution of SBS modified asphalts under natural weathering. Fuel, 2016, 184 : 242– 247

[18]

Yut I, Zofka A. Attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy of oxidized polymer-modified bitumens. Applied Spectroscopy, 2011, 65( 7): 765– 770

[19]

Ruan Y, Davison R R, Glover C J. Oxidation and viscosity hardening of polymer-modified asphalts. Energy & Fuels, 2003, 17( 4): 991– 998

[20]

Weng S. Fourier Transform Infrared Spectroscopy. Beijing: Chemical Industry Press, 2010 (in Chinese)

[21]

Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, Grama A, van Duin A C. The ReaxFF reactive force-field: Development, applications and future directions. npj Computational Materials, 2016, 2( 1): 1– 14

[22]

Monari A, Rivail J L, Assfeld X. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Accounts of Chemical Research, 2013, 46( 2): 596– 603

[23]

Hu D, Gu X, Cui B, Pei J, Zhang Q. Modeling the oxidative aging kinetics and pathways of asphalt: A ReaxFF molecular dynamics study. Energy & Fuels, 2020, 34( 3): 3601– 3613

[24]

Zhang L, Greenfield M L. Analyzing properties of model asphalts using molecular simulation. Energy & Fuels, 2007, 21( 3): 1712– 1716

[25]

Guo M, Tan Y, Wang L, Hou Y. A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate. Frontiers of Structural and Civil Engineering, 2018, 12( 2): 248– 259

[26]

Hu D, Pei J, Li R, Zhang J, Jia Y, Fan Z. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation. Frontiers of Structural and Civil Engineering, 2020, 14( 1): 109– 122

[27]

Sun H, Jin Z, Yang C, Akkermans R L, Robertson S H, Spenley N A, Miller S, Todd S M. COMPASS II: Extended coverage for polymer and drug-like molecule databases. Journal of Molecular Modeling, 2016, 22( 2): 47–

[28]

Cui B, Gu X, Hu D, Dong Q. A multiphysics evaluation of the rejuvenator effects on aged asphalt using molecular dynamics simulations. Journal of Cleaner Production, 2020, 259 : 120629–

[29]

Xu G, Wang H. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel, 2017, 188 : 1– 10

[30]

Chenoweth K, van Duin A C, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A, 2008, 112( 5): 1040– 1053

[31]

van Duin A C, Dasgupta S, Lorant F, Goddard W A. ReaxFF: A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, 105( 41): 9396– 9409

[32]

Strachan A, van Duin A C, Chakraborty D, Dasgupta S, Goddard W A III. Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Physical Review Letters, 2003, 91( 9): 098301–

[33]

Castro-Marcano F, Kamat A M, Russo M F Jr, van Duin A C, Mathews J P. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combustion and Flame, 2012, 159( 3): 1272– 1285

[34]

Corbett L W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Analytical Chemistry, 1969, 41( 4): 576– 579

[35]

Li D D, Greenfield M L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel, 2014, 115 : 347– 356

[36]

Rasool R, Hongru Y, Hassan A, Wang S, Zhang H. In-field aging process of high content SBS modified asphalt in porous pavement. Polymer Degradation & Stability, 2018, 155 : 220– 229

[37]

Lin P, Yan C, Huang W, Li Y, Zhou L, Tang N, Xiao F, Zhang Y, Lv Q. Rheological, chemical and aging characteristics of high content polymer modified asphalt. Construction & Building Materials, 2019, 207 : 616– 629

[38]

Sugano M, Kajita J, Ochiai M, Takagi N, Iwai S, Hirano K. Mechanisms for chemical reactivity of two kinds of polymer modified asphalts during thermal degradation. Chemical Engineering Journal, 2011, 176−177 : 231– 236

[39]

Mirwald J, Werkovits S, Camargo I, Maschauer D, Hofko B, Grothe H. Investigating bitumen long-term-ageing in the laboratory by spectroscopic analysis of the SARA fractions. Construction & Building Materials, 2020, 258 : 119577–

[40]

Xue Y, Hu Z, Wang C, Xiao Y. Evaluation of dissolved organic carbon released from aged asphalt binder in aqueous solution. Construction & Building Materials, 2019, 218 : 465– 476

[41]

Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 1995, 117( 1): 1– 19

[42]

Zhang L, Song Z, Zhao B, Villarreal E, Ban H. Fast atom effect on helium gas/graphite interfacial energy transfer. Carbon, 2020, 161 : 206– 218

[43]

AASHTO. Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). Washington, D.C.: American Association of State Highway and Transportation Officials, 2013

[44]

AASHTO. Standard Method of Test for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV). Washington, D.C.: American Association of State Highway and Transportation Officials, 2012

[45]

Sun D, Lin T, Zhu X, Tian Y, Liu F. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders. Computational Materials Science, 2016, 114 : 86– 93

[46]

Biovia Inc. San Diego C. Materials Studio, version 7.0. 2013

[47]

Airey G D. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel, 2003, 82( 14): 1709– 1719

[48]

Lutišan J, Cvengroš J. Mean free path of molecules on molecular distillation. Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 56( 2): 39– 50

[49]

Liu B, Vu-Bac N, Zhuang X, Rabczuk T. Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites. Mechanics of Materials, 2020, 142 : 103280–

[50]

Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68 : 70– 84

[51]

Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59 : 80– 95

[52]

Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics, 1996, 14( 1): 33– 38

[53]

Qu X, Liu Q, Guo M, Wang D, Oeser M. Study on the effect of aging on physical properties of asphalt binder from a microscale perspective. Construction & Building Materials, 2018, 187 : 718– 729

[54]

Wei J, Dong F, Li Y, Zhang Y. Relationship analysis between surface free energy and chemical composition of asphalt binder. Construction & Building Materials, 2014, 71 : 116– 123

[55]

Wang P, Dong Z, Tan Y, Liu Z. Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations. Energy & Fuels, 2015, 29( 1): 112– 121

AI Summary AI Mindmap
PDF (16846KB)

3900

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/