Effect of microlimestone on properties of self-consolidating concrete with manufactured sand and mineral admixture
Fulin Qu , Wengui Li , Xiaohui Zeng , Zhiyu Luo , Kejin Wang , Daichao Sheng
Front. Struct. Civ. Eng. ›› 2020, Vol. 14 ›› Issue (6) : 1545 -1560.
Effect of microlimestone on properties of self-consolidating concrete with manufactured sand and mineral admixture
Self-consolidating concrete (SCC) with manufactured sand (MSCC) is crucial to guarantee the quality of concrete construction technology and the associated property. The properties of MSCC with different microlimestone powder (MLS) replacements of retreated manufactured sand (TMsand) are investigated in this study. The result indicates that high-performance SCC, made using TMsand (TMSCC), achieved high workability, good mechanical properties, and durability by optimizing MLS content and adding fly ash and silica fume. In particular, the TMSCC with 12% MLS content exhibits the best workability, and the TMSCC with 4% MLS content has the highest strength in the late age, which is even better than that of SCC made with the river sand (Rsand). Though MLS content slightly affects the hydration reaction of cement and mainly plays a role in the nucleation process in concrete structures compared to silica fume and fly ash, increasing MLS content can evidently have a significant impact on the early age hydration progress. TMsand with MLS content ranging from 8% to 12% may be a suitable alternative for the Rsand used in the SCC as fine aggregate. The obtained results can be used to promote the application of SCC made with manufactured sand and mineral admixtures for concrete-based infrastructure.
microlimestone powder / manufactured sand / retreated manufactured sand / self-consolidating concrete / mineral admixture
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
ASTM C29/C29M-17a. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. West Conshohocken: PA.ASTM International, 2017 |
| [28] |
ASTM 1611/C 1611M-14. Standard Test Method for Slump-Flow of Self Consolidating Concrete. West Conshohocken, PA: ASTM International, 2014 |
| [29] |
ASTM C39/C39M-18. Standard Test Method for Compressive Strength of Concrete. West Conshohocken, PA: ASTM International, 2018 |
| [30] |
ASTM C1202-19. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. West Conshohocken, PA: ASTM International, 2019 |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
Higher Education Press
/
| 〈 |
|
〉 |