Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics investigation

Mohammad SALAVATI , Arvin MOJAHEDIN , Ali Hossein Nezhad SHIRAZI

Front. Struct. Civ. Eng. ›› 2020, Vol. 14 ›› Issue (3) : 623 -631.

PDF (4915KB)
Front. Struct. Civ. Eng. ›› 2020, Vol. 14 ›› Issue (3) : 623 -631. DOI: 10.1007/s11709-020-0616-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics investigation

Author information +
History +
PDF (4915KB)

Abstract

In this work we conducted classical molecular dynamics (MD) simulation to investigate the mechanical characteristics and failure mechanism of hexagonal boron-nitride (h-BN) nanosheets. Pristine and defective structure of h-BN nanosheets were considered under the uniaxial tensile loadings at various temperatures. The defective structure contains three types of the most common initial defects in engineering materials that are known as cracks, notches (with various length/size), and point vacancy defects (with a wide range of concentration). MD simulation results demonstrate a high load-bearing capacity of extremely defective (amorphized) h-BN nanosheets. Our results also reveal that the tensile strength decline by increasing the defect content and temperature as well. Our MD results provide a comprehensive and useful vision concerning the mechanical properties of h-BN nanosheets with/without defects, which is very critical for the designing of nanodevices exploiting the exceptional physics of h-BN.

Keywords

hexagonal boron-nitride / mechanical properties / crack / notch / point defects / molecular dynamics

Cite this article

Download citation ▾
Mohammad SALAVATI, Arvin MOJAHEDIN, Ali Hossein Nezhad SHIRAZI. Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics investigation. Front. Struct. Civ. Eng., 2020, 14(3): 623-631 DOI:10.1007/s11709-020-0616-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

[2]

Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453

[3]

Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7(4): 2898–2926

[4]

Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150

[5]

Lynch R W, Drickamer H G. Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride. Journal of Chemical Physics, 1966, 44(1): 181–184

[6]

Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials, 2004, 3(6): 404–409

[7]

Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6): 2979–2993

[8]

Mortazavi B, Pereira L F C, Jiang J W, Rabczuk T. Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Scientific Reports, 2015, 5(1): 13228

[9]

Mortazavi B, Cuniberti G. Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Advances, 2014, 4(37): 19137–19143

[10]

Li L H, Cervenka J, Watanabe K, Taniguchi T, Chen Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano, 2014, 8(2): 1457–1462

[11]

Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Yu T, Ajayan P M, Tour J M. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Research, 2014, 7(8): 1232–1240

[12]

Kumar R, Rajasekaran G, Parashar A. Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: A molecular dynamics study. Nanotechnology, 2016, 27(8): 085706

[13]

Wang J, Ma F, Sun M. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Advances, 2017, 7(27): 16801–16822

[14]

Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W. Boron nitride nanostructures: Fabrication, functionalization and applications. Small, 2016, 12(22): 2942–2968

[15]

Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 2013, 8(2): 119–124

[16]

Rubio A, Corkill J L, Cohen M L. Theory of graphitic boron nitride nanotubes. Physical Review B: Condensed Matter, 1994, 49(7): 5081–5084

[17]

Cresti A, Nemec N, Biel B, Niebler G, Triozon F, Cuniberti G, Roche S. Charge transport in disordered graphene-based low dimensional materials. Nano Research, 2008, 1(5): 361–394

[18]

Banhart F, Kotakoski J, Krasheninnikov A V. Structural defects in graphene. ACS Nano, 2011, 5(1): 26–41

[19]

Boukhvalov D W, Katsnelson M I. Chemical functionalization of graphene with defects. Nano Letters, 2008, 8(12): 4373–4379

[20]

Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S. Direct evidence for atomic defects in graphene layers. Nature, 2004, 430(7002): 870–873

[21]

Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 2008, 8(11): 3582–3586

[22]

Kotakoski J, Krasheninnikov A V, Nordlund K. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(24): 245420

[23]

Ma J, Alfè D, Michaelides A, Wang E. Stone-Wales defects in graphene and other planar sp2-bonded materials. Physical Review B: Condensed Matter and Materials Physics, 2009, 80(3): 033407

[24]

Mortazavi B, Cuniberti G. Atomistic modeling of mechanical properties of polycrystalline graphene. Nanotechnology, 2014, 25(21): 215704

[25]

Mortazavi B, Pötschke M, Cuniberti G. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Nanoscale, 2014, 6(6): 3344–3352

[26]

Lee C, Wei X, Kysar J W, Hone J.Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321 (5887): 385–388

[27]

Bourrellier R, Meuret S, Tararan A, Stéphan O, Kociak M, Tizei L H G, Zobelli A. Bright UV Single photon emission at point defects in h-BN. Nano Letters, 2016, 16(7): 4317–4321

[28]

Salavati M, Ghasemi H, Rabczuk T. Electromechanical properties of Boron Nitride Nanotube: Atomistic bond potential and equivalent mechanical energy approach. Computational Materials Science, 2018, 149: 460–465

[29]

Salavati M, Rabczuk T. Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na- and Ca-ion storage. Computational Materials Science, 2019, 160: 360–367

[30]

Salavati M. Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles. Frontiers of Structural and Civil Engineering, 2019, 13(2): 486–494

[31]

Katzir A, Suss J T, Zunger A, Halperin A. Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Physical Review B, 1975, 11(6): 2370–2377

[32]

Jiménez I, Jankowski A F, Terminello L J, Sutherland D G J, Carlisle J A, Doll G L, Tong W M, Shuh D K, Himpsel F J. Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride. Physical Review B: Condensed Matter, 1997, 55(18): 12025–12037

[33]

Hirano S I, Yogo T, Asada S, Naka S. Synthesis of amorphous boron nitride by pressure pyrolysis of borazine. Journal of the American Ceramic Society, 1989, 72(1): 66–70

[34]

Taniguchi T, Kimoto K, Tansho M, Horiuchi S, Yamaoka S. Phase transformation of amorphous boron nitride under high pressure. Chemistry of Materials, 2003, 15(14): 2744–2751

[35]

Mortazavi B, Ahzi S. Thermal conductivity and tensile response of defective graphene: A molecular dynamics study. Carbon N. Y., 2013, 63: 460–470

[36]

Ding N, Chen X, Wu C M L. Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets. Scientific Reports, 2016, 6(1): 31499

[37]

Güryel S, Hajgató B, Dauphin Y, Blairon J M, Edouard Miltner H, De Proft F, Geerlings P, Van Lier G. Effect of structural defects and chemical functionalisation on the intrinsic mechanical properties of graphene. Physical Chemistry Chemical Physics, 2013, 15(2): 659–665

[38]

Han T, Luo Y, Wang C. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. Journal of Physics D, Applied Physics, 2014, 47(2): 025303

[39]

Abadi R, Uma R P, Izadifar M, Rabczuk T. Investigation of crack propagation and existing notch on the mechanical response of polycrystalline hexagonal boron-nitride nanosheets. Computational Materials Science, 2017, 131: 86–99

[40]

Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19

[41]

Matsunaga K, Fisher C, Matsubara H. Tersoff potential parameters for simulating cubic boron carbonitrides. Japanese Journal of Applied Physics, 2000, 39: 48–51

[42]

Martyna G J, Klein M L, Tuckerman M. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. The Journal of chemical physics, 1992, 97(4): 2635–3643

[43]

Cheng A, Merz K M. Application of the Nosé-Hoover chain algorithm to the study of protein dynamics. Journal of Physical Chemistry, 1996, 100(5): 1927–1937

[44]

Nosé S. A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81(1): 511–519

[45]

Hoover W G. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31(3): 1695–1697

[46]

Mortazavi B, Cuniberti G, Rabczuk T. Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study. Computational Materials Science, 2015, 99: 285–289

[47]

Mortazavi B, Makaremi M, Shahrokhi M, Raeisi M, Singh C V, Rabczuk T, Pereira L F C. Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Nanoscale, 2018, 10(8): 3759–3768

[48]

Mortazavi B, Makaremi M, Shahrokhi M, Fan Z, Rabczuk T. N-graphdiyne two-dimensional nanomaterials: Semiconductors with low thermal conductivity and high stretchability. Carbon N. Y., 2018, 137: 57–67

[49]

Mortazavi B, Madjet M E, Shahrokhi M, Ahzi S, Zhuang X, Rabczuk T. Nanoporous graphene: A 2D semiconductor with anisotropic mechanical, optical and thermal conduction properties. Carbon N. Y., 2019, 147: 377–384

[50]

Mortazavi B, Benzerara O, Meyer H, Bardon J, Ahzi S. Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon N. Y., 2013, 60: 356–365

[51]

Mortazavi B, Rabczuk T. Multiscale modeling of heat conduction in graphene laminates. Carbon N. Y., 2015, 85: 1–7

[52]

Mortazavi B, Shahrokhi M, Zhuang X, Rabczuk T. Boron-graphdiyne: A superstretchable semiconductor with low thermal conductivity and ultrahigh capacity for Li, Na and Ca ion storage. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(23): 11022–11036

[53]

Mortazavi B, Rémond Y, Ahzi S, Toniazzo V. Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Computational Materials Science, 2012, 53(1): 298–302

[54]

Subramaniyan A K, Sun C T. Continuum interpretation of virial stress in molecular simulations. International Journal of Solids and Structures, 2008, 45(14–15): 4340–4346

[55]

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012

[56]

Guo H, Zhuang X, Rabczuk T. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456

[57]

Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359

[58]

Rabczuk T, Ren H, Zhuang X. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials & Continua, 2019, 59(1): 31–55

[59]

Varshni Y P. Temperature dependence of the elastic constants. Physical Review B, 1970, 2(10): 3952–3958

[60]

Ziman J M. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Clarendon Press, 2001

[61]

Ziman J M. Electrons and Phonons. Oxford: Oxford University Press, 2001

[62]

Liu F, Ming P, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(6): 064120

[63]

Shirazi A H N. Molecular dynamics investigation of mechanical properties of single-layer phagraphene. Frontiers of Structural and Civil Engineering, 2019, 13(2): 495–503

[64]

Shirazi A H N, Abadi R, Izadifar M, Alajlan N, Rabczuk T. Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations. Computational Materials Science, 2018, 147: 316–321

[65]

Mortazavi B. Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon N. Y., 2017, 118: 25–34

[66]

Mortazavi B, Fan Z, Pereira L F C, Harju A, Rabczuk T. Amorphized graphene: A stiff material with low thermal conductivity. Carbon N. Y., 2016, 103: 318–326

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4915KB)

2110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/