Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action

Nazim Abdul NARIMAN , Raja Rizwan HUSSAIN , Ilham Ibrahim MOHAMMAD , Peyman KARAMPOUR

Front. Struct. Civ. Eng. ›› 2019, Vol. 13 ›› Issue (6) : 1289 -1300.

PDF (1382KB)
Front. Struct. Civ. Eng. ›› 2019, Vol. 13 ›› Issue (6) : 1289 -1300. DOI: 10.1007/s11709-019-0548-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action

Author information +
History +
PDF (1382KB)

Abstract

There are many certain and uncertain design factors which have unrevealed rational effects on the generation of tensile damage and the stability of the circular tunnels during seismic actions. In this research paper, we have dedicated three certain and four uncertain design factors to quantify their rational effects using numerical simulations and the Sobol’s sensitivity indices. Main effects and interaction effects between the design factors have been determined supporting on variance-based global sensitivity analysis. The results detected that the concrete modulus of elasticity for the tunnel lining has the greatest effect on the tensile damage generation in the tunnel lining during the seismic action. In the other direction, the interactions between the concrete density and both of concrete modulus of elasticity and tunnel diameter have appreciable effects on the tensile damage. Furthermore, the tunnel diameter has the deciding effect on the stability of the tunnel structure. While the interaction between the tunnel diameter and concrete density has appreciable effect on the stability process. It is worthy to mention that Sobol’s sensitivity indices manifested strong efficiency in detecting the roles of each design factor in cooperation with the numerical simulations explaining the responses of the circular tunnel during seismic actions.

Keywords

shear waves / Sobol’s sensitivity indices / maximum principal stress / maximum overall displacement / tensile damage

Cite this article

Download citation ▾
Nazim Abdul NARIMAN, Raja Rizwan HUSSAIN, Ilham Ibrahim MOHAMMAD, Peyman KARAMPOUR. Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action. Front. Struct. Civ. Eng., 2019, 13(6): 1289-1300 DOI:10.1007/s11709-019-0548-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akhlaghi T, Nikkar A. Effect of vertically propagating shear waves on seismic behavior of circular tunnels. Hindawi the Scientific World Journal, 2014, 2014, 1–10

[2]

Hashash Y M A, Hook J J, Schmidt B, I-Chiang Yao J. Seismic design and analysis of underground structure. Tunnelling and Underground Space Technology, 2001, 16(4): 247–293

[3]

Nariman N A, Hussain R R, Msekh M A, Karampour P. Prediction meta-models for the responses of a circular tunnel during earthquakes. Underground Space, 2019, 4(1): 31–47

[4]

Nariman N A, Ramazan A, Mohammad I I. Application of coupled XFEM-BCQO in the structural optimization of a circular tunnel lining subjected to a ground motion. Frontiers of Structural and Civil Engineering, 2019 (in press)

[5]

Mollon G, Dias D, Soubra A H. Probabilistic analysis and design of circular tunnels against face stability. International Journal of Geomechanics, 2009, 9(6): 237–249

[6]

Kalab Z, Stemon P. Influence of seismic events on shallow geotechnical structures. Acta Montanistica Slovaca, 2017, 22(4): 412–421

[7]

Ghasemi H, Park H S, Rabczuk T. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258

[8]

Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach. Structural and Multidisciplinary Optimization, 2015, 51(1): 99–112

[9]

Zhang C, Nanthakumar S S, Lahmer T, Rabczuk T. Multiple cracks identification for piezoelectric structures. International Journal of Fracture, 2017, 206(2): 151–169

[10]

Nanthakumar S, Zhuang X, Park H, Rabczuk T. Topology optimization of flexoelectric structures. Journal of the Mechanics and Physics of Solids, 2017, 105: 217–234

[11]

Nanthakumar S, Lahmer T, Zhuang X, Park H S, Rabczuk T. Topology optimization of piezoelectric nanostructures. Journal of the Mechanics and Physics of Solids, 2016, 94: 316–335

[12]

Nanthakumar S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176

[13]

Nanthakumar S, Valizadeh N, Park H, Rabczuk T. Surface effects on shape and topology optimization of nanostructures. Computational Mechanics, 2015, 56(1): 97–112

[14]

Nanthakumar S S, Lahmer T, Rabczuk T. Detection of flaws in piezoelectric structures using extended FEM. International Journal for Numerical Methods in Engineering, 2013, 96(6): 373–389

[15]

Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

[16]

Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535

[17]

Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464

[18]

Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354

[19]

Bažant Z P. Why continuum damage is nonlocal: Micromechanics arguments. Journal of Engineering Mechanics, 1991, 117(5): 1070–1087

[20]

Thai T Q, Rabczuk T, Bazilevs Y, Meschke G. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604

[21]

Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, 1993, 41(12): 1825–1857

[22]

Rabczuk T, Eibl J. Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444

[23]

Rabczuk T, Eibl J, Stempniewski L. Numerical analysis of high speed concrete fragmentation using a meshfree Lagrangian method. Engineering Fracture Mechanics, 2004, 71(4–6): 547–556

[24]

Rabczuk T, Xiao S P, Sauer M. Coupling of meshfree methods with nite elements: Basic concepts and test results. Communications in Numerical Methods in Engineering, 2006, 22(10): 1031–1065

[25]

Rabczuk T, Eibl J. Modelling dynamic failure of concrete with meshfree methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897

[26]

Etse G, Willam K. Failure analysis of elastoviscoplastic material models. Journal of Engineering Mechanics, 1999, 125(1): 60–69

[27]

Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45–48): 2765–2778

[28]

Amiri F, Millan D, Arroyo M, Silani M, Rabczuk T. Fourth order phase-field model for local max-ent approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312(C): 254–275

[29]

Areias P, Rabczuk T, Msekh M. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312(C): 322–350

[30]

Msekh M A, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, Rabczuk T. Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase-field model. Composites. Part B, Engineering, 2016, 93: 97–114

[31]

Hamdia K, Msekh M A, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, Rabczuk T. Uncertainty quantication of the fracture properties of polymeric nanocomposites based on phase-field modeling. Composite Structures, 2015, 133: 1177–1190

[32]

Msekh M A, Sargado M, Jamshidian M, Areias P, Rabczuk T. ABAQUS implementation of phase-field model for brittle fracture. Computational Materials Science, 2015, 96: 472–484

[33]

Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109

[34]

Hamdia K M, Zhuang X, He P, Rabczuk T. Fracture toughness of polymeric particle nanocomposites: Evaluation of Models performance using Bayesian method. Composites Science and Technology, 2016, 126: 122–129

[35]

Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on Lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12–14): 1035–1063

[36]

Rabczuk T, Belytschko T. Adaptivity for structured meshfree particle methods in 2D and 3D. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1559–1582

[37]

Nguyen V P, Rabczuk T, Bordas S, Duflot M. Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813

[38]

Zhuang X, Cai Y, Augarde C. A meshless sub-region radial point interpolation method for accurate calculation of crack tip elds. Theoretical and Applied Fracture Mechanics, 2014, 69: 118–125

[39]

Zhuang X, Zhu H, Augarde C. An improved meshless Shepard and least square method possessing the delta property and requiring no singular weight function. Computational Mechanics, 2014, 53(2): 343–357

[40]

Zhuang X, Augarde C, Mathisen K. Fracture modelling using meshless methods and level sets in 3D: Framework and modelling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998

[41]

Chen L, Rabczuk T, Bordas S, Liu GR, Zeng KY, Kerfriden P. Extended finite element method with edge-based strain smoothing (Esm-XFEM) for linear elastic crack growth. Computer Methods in Applied Mechanics and Engineering, 2012, 209–212(4): 250–265

[42]

Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

[43]

Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150

[44]

Vu-Bac N, Nguyen-Xuan H, Chen L, Lee C K, Zi G, Zhuang X, Liu G R, Rabczuk T. A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. Journal of Applied Mathematics, 2013, 2013, 978026

[45]

Bordas S P A, Natarajan S, Kerfriden P, Augarde C E, Mahapatra D R, Rabczuk T, Pont S D. On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). International Journal for Numerical Methods in Engineering, 2011, 86(4–5): 637–666

[46]

Bordas S P A, Rabczuk T, Hung N X, Nguyen V P, Natarajan S, Bog T, Quan D M, Hiep N V. Strain Smoothing in FEM and XFEM. Computers & Structures, 2010, 88(23–24): 1419–1443

[47]

Rabczuk T, Zi G, Gerstenberger A, Wall W A. A new crack tip element for the phantom node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599

[48]

Chau-Dinh T, Zi G, Lee P S, Rabczuk T, Song J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92–93: 242–256

[49]

Song J H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893

[50]

Areias P M A, Song J H, Belytschko T. Analysis of fracture in thin shells by overlapping paired elements. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41–43): 5343–5360

[51]

Rabczuk T, Areias P M A. A meshfree thin shell for arbitrary evolving cracks based on an external enrichment. CMES-Computer Modeling in Engineering and Sciences, 2006, 16(2): 115–130

[52]

Zi G, Rabczuk T, Wall W A. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382

[53]

Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

[54]

Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760

[55]

Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for nonlinear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

[56]

Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960

[57]

Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758

[58]

Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71

[59]

Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411

[60]

Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57

[61]

Talebi H, Samaniego C, Samaniego E, Rabczuk T. On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods. International Journal for Numerical Methods in Engineering, 2012, 89(8): 1009–1027

[62]

Nguyen-Thanh N, Zhou K, Zhuang X, Areias P, Nguyen-Xuan H, Bazilevs Y, Rabczuk T. Isogeometric analysis of large-deformation thin shells using RHTsplines for multiple-patch coupling. Computer Methods in Applied Mechanics and Engineering, 2017, 316: 1157–1178

[63]

Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchho-Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291

[64]

Jia Y, Anitescu C, Ghorashi S, Rabczuk T. Extended isogeometric analysis for material interface problems. IMA Journal of Applied Mathematics, 2015, 80(3): 608–633

[65]

Ghorashi S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture nalysis of orthotropic media. Computers & Structures, 2015, 147: 138–146

[66]

Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

[67]

Rabczuk T, Areias P M A. A new approach for modelling slip lines in geological materials with cohesive models. International Journal for Numerical and Analytical Methods in Engineering, 2006, 30(11): 1159–1172

[68]

Rabczuk T, Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49

[69]

Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799

[70]

Rabczuk T, Areias P M A, Belytschko T. A simplied meshfree method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007, 69(5): 993–1021

[71]

Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6–8): 641–658

[72]

Rabczuk T, Song J H, Belytschko T. Simulations of instability in dynamic fracture by the cracking particles method. Engineering Fracture Mechanics, 2009, 76(6): 730–741

[73]

Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455

[74]

Cai Y, Zhuang X, Zhu H. A generalized and ecient method for nite cover generation in the numerical manifold method. International Journal of Computational Methods, 2013, 10(5): 1350028

[75]

Liu G, Zhuang X, Cui Z. Three-dimensional slope stability analysis using independent cover based numerical manifold and vector method. Engineering Geology, 2017, 225: 83–95

[76]

Nguyen B H, Zhuang X, Wriggers P, Rabczuk T, Mear M E, Tran H D. Isogeometric symmetric Galerkin boundary element method for three-dimensional elasticity problems. Computer Methods in Applied Mechanics and Engineering, 2017, 323: 132–150

[77]

Nguyen B H, Tran H D, Anitescu C, Zhuang X, Rabczuk T. An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275

[78]

Zhu H, Wu W, Chen J, Ma G, Liu X, Zhuang X. Integration of three dimensional discontinuous deformation analysis (DDA) with binocular photogrammetry for stability analysis of tunnels in blocky rock mass. Tunnelling and Underground Space Technology, 2016, 51: 30–40

[79]

Wu W, Zhu H, Zhuang X, Ma G, Cai Y. A multi-shell cover algorithm for contact detection in the three dimensional discontinuous deformation analysis. Theoretical and Applied Fracture Mechanics, 2014, 72: 136–149

[80]

Cai Y, Zhu H, Zhuang X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modelling. Frontiers of Structural and Civil Engineering, 2013, 7(4): 369–378

[81]

Nguyen-Xuan H, Liu G R, Bordas S, Natarajan S, Rabczuk T. An adaptive singular ES-FEM for mechanics problems with singular eld of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273

[82]

Areias P, Rabczuk T. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture. Finite Elements in Analysis and Design, 2017, 132: 27–41

[83]

Areias P, Reinoso J, Camanho P, Rabczuk T. A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Computational Mechanics, 2015, 56(2): 291–315

[84]

Areias P M A, Rabczuk T, Camanho P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63

[85]

Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137

[86]

Areias P, Rabczuk T, Camanho P P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947

[87]

Areias P, Rabczuk T. Finite strain fracture of plates and shells with congurational forces and edge rotation. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122

[88]

Silani M, Talebi H, Hamouda A S, Rabczuk T. Nonlocal damage modeling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23

[89]

Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92

[90]

Silani M, Talebi H, Ziaei-Rad S, Hamouda A M S, Zi G, Rabczuk T. A three dimensional extended Arlequin method for dynamic fracture. Computational Materials Science, 2015, 96: 425–431

[91]

Silani M, Ziaei-Rad S, Talebi H, Rabczuk T. A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74: 30–38

[92]

Talebi H, Silani M, Bordas S, Kerfriden P, Rabczuk T. A computational library for multiscale modelling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071

[93]

Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541

[94]

Yang S W, Budarapu P R, Mahapatra D R, Bordas S P A, Zi G, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96: 382–395

[95]

Budarapu P, Gracie R, Bordas S, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148

[96]

Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Ecient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

[97]

Zhuang X, Wang Q, Zhu H. Multiscale modelling of hydro-mechanical couplings in quasi-brittle materials. International Journal of Fracture, 2017, 204(1): 1–27

[98]

Zhu H, Wang Q, Zhuang X. A nonlinear semi-concurrent multiscale method for fractures. International Journal of Impact Engineering, 2016, 87: 65–82

[99]

Zhuang X, Wang Q, Zhu H. A 3D computational homogenization model for porous material and parameters identification. Computational Materials Science, 2015, 96: 536–548

[100]

Kouznetsova V, Geers M G D, Brekelmans W A M. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering, 2002, 54(8): 1235–1260

[101]

Rabczuk T, Ren H. A peridynamics formulation for quasi-static fracture and contact in rock. Engineering Geology, 2017, 225: 42–48

[102]

Amani J, Oterkus E, Areias P, Zi G, Nguyen-Thoi T, Rabczuk T. A non-ordinary state-based peridynamics formulation for thermoplastic fracture. International Journal of Impact Engineering, 2016, 87: 83–94

[103]

Ren H, Zhuang X, Rabczuk T. A new Peridynamic formulation with shear deformation for elastic solid. Journal of Micromechanics and Molecular Physics, 2016, 1(2): 1650009

[104]

Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476

[105]

Ren H, Zhuang X, Rabczuk T. Dual-horizon peridynamics: A stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782

[106]

Glen G, Isaacs K. Estimating sobol sensitivity indices using correlations. Journal of Environmental Modelling and Software, 2012, 37: 157–166

[107]

Nossent J, Elsen P, Bauwens W. Sobol sensitivity analysis of a complex environmental model. Journal of Environmental Modelling and Software, 2011, 26(12): 1515–1525

[108]

Zhang X Y, Trame M N, Lesko L J, Schmidt S. Sobol sensitivity analysis: A tool to guide the development and evaluation of systems pharmacology models. CPT: Pharmacometrics & Systems Pharmacology, 2015, 4(2): 69–79

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1382KB)

2488

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/