The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials

Ismael FLORES-VIVIAN , Rani G.K PRADOTO , Mohamadreza MOINI , Marina KOZHUKHOVA , Vadim POTAPOV , Konstantin SOBOLEV

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 436 -445.

PDF (2675KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 436 -445. DOI: 10.1007/s11709-017-0438-2
RESEARCH ARTICLE
RESEARCH ARTICLE

The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials

Author information +
History +
PDF (2675KB)

Abstract

The nanoparticles of SiO2 were used in cement systems to modify the rheological behavior, to enhance the reactivity of supplementary cementitious materials, and also to improve the strength and durability. In this research, low-cost nano-SiO2 particles from natural hydrothermal solutions obtained by membrane ultrafiltration and, optionally, by cryochemical vacuum sublimation drying, were evaluated in portland cement based systems. ƒThe SiO2-rich solutions were obtained from the wells of Mutnovsky geothermal power station (Far East of Russia). The constant nano-SiO2 dosage of 0.25% (as a solid material by weight of cementitious materials) was used to compare the cement systems with different nanoparticles against a reference mortar and a commercially available nano-SiO2. Nanoparticles were characterized by X-Ray Diffraction (XRD), BET Surface Area, Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FTIR) spectroscopy techniques. It was demonstrated that the addition of polycarboxylate ether superplasticizer and the dispersion treatment using an ultrasound processor can be used to facilitate the distribution of nano-SiO2 particles in the mixing water. The effect of nano-SiO2 particles in portland cement mortars was investigated by evaluating the flow, heat of hydration and compressive strength development. It was demonstrated that the use of nano-SiO2 particles can reduce the segregation and improve strength properties.

Keywords

ultrafiltration / cryochemical vacuum sublimation drying / nanoparticles / portland cement / heat of hydration / surface area / compressive strength

Cite this article

Download citation ▾
Ismael FLORES-VIVIAN, Rani G.K PRADOTO, Mohamadreza MOINI, Marina KOZHUKHOVA, Vadim POTAPOV, Konstantin SOBOLEV. The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials. Front. Struct. Civ. Eng., 2017, 11(4): 436-445 DOI:10.1007/s11709-017-0438-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Björnström JPanas I. Antagonistic effect of superplasticizer and colloidal nano-silica in the hydration of alite and belite pastes. Journal of Materials Science200711(42): 3901–3907

[2]

Collepardi MOgoumah JSkarp UTroli R. Influence of Amorphous Colloidal Silica on the Properties of Self-Compacting Concretes. In: Proceedings of the International Conference, Challenges in Concrete Construction- Innovations and Developments  in  Concrete  Materials  and  Construction, Dundee, UK2002.

[3]

Ye QZhang ZKong DChen R. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction & Building Materials200721(3): 539–545

[4]

Flores-Vivian ISobolev KTorres-Martinez LCuellar EValdez PZarazua E. Performance of Cement Systems with Nano- SiO2 Particles Produced Using Sol-gel Method. Transportation Research Record20101: 10–14

[5]

SobolevK. Modern developments related to nanotechnology and nanoengineering of concrete.Frontiers of Structural and Civil Engineering, 2016, 10(2): 131–141

[6]

PotapovV, ShitikovE, TrutnevN, GorbachV, PortnyaginN. Influence of Silica Nanoparticles on the Strength Characteristics of Cement Samples.Glass Physics and Chemistry, 2001, 1(37): 98–105

[7]

MoiniM, Flores-VivianI, AmirjanovA, SobolevK. The optimization of aggregate blends for sustainable low cement concrete.Construction &Building Materials, 2015, 93: 627–634

[8]

Langan BWeng KWard M. Effect of silica fume and fly ash on heat of hydration of portland cement. Cement and Concrete Research200232(7): 1045–1051

[9]

Flores-Vivian IPradoto RMoini MSobolev K. The use of nanoparticles to improve the performance of concrete. In: Nano Conference, Brno, Czech Republic, EU2013

[10]

Björnström JMartinelli AMatic ABörjesson LPanas I. Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chemical Physics Letters2004392(1–3): 242–248

[11]

Gaitero J JCampillo IGuerrero A. Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research200838(8–9): 1112–1118

[12]

Jansson ISkarp UBigley C. The value of colloidal silica for enhanced durability in high fluidity cement based mixes. In: the 5 International RILEM symposium on self-compacting concrete2007

[13]

Green B. Development of a high-density cementitious rock-matching grout using nano-particles. In: Proceedings of ACI Session on “Nanotechnology of Concrete: Recent Developments and Future Perspectives”2008

[14]

GawellK. Can Geothermal Energy Offset Global Warming? Renewable Energy News & Information, 2008

[15]

SobolevK. Nanotechnology and Nanoengineering of Construction Materials.In: Nanotechnology in Construction, Proceedings of NICOM5, 2015, 3–13

[16]

KagelA. The State of Geothermal Technology Part II: Surface Technology.Geothermal Energy Association, 2008

[17]

Yokogawa Corporation of America.Yokogawa in the Power Industry,Bulletin 53T01A01-01E, 2005

[18]

KutepovA, PotapovV. Movement and mass exchange of liquid drop in spinned flow of geothermal medium.Tear. Osnovy Khim. Tekh., 2000, 34(2)

[19]

Brazhnikov SGeneralov MTaitnev N. Vacuum Sublimation Technique for Preparing Ultradispersed Powders of Inorganic Salts. Khim. Mashinoslr. (Moscow)200412: 12–15

[20]

ASTM C778. American Society for Testing and Materials. Standard specification of standard sand2006, 372–374

[21]

Zhuravlev L. The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces. A, Physicochemical and Engineering Aspects2000173(1): 1–38

[22]

Mindess SYoung J FDarwin D. Concrete, 2nd ed., Upper Saddle River, NJ: Prentice Hall2003

[23]

ASTM C1679 – 09. American Society for Testing and Materials. Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry2009

[24]

Wang KGe ZGrove JRuiz J MRasmussen RFerragut T. Developing a Simple and Rapid Test for Monitoring the Heat Evolution of Concrete Mixtures for Both Laboratory and Field Applications. Center for Transportation Research and Education, Iowa State University2007

[25]

Muzenski SFlores-Vivian ISobolev K. Hydrophobic engineered cementitious composites for highway applications. Cement and Concrete Composites201557: 68–74

[26]

ASTM C1437-07. American Society for Testing and Materials. Test Method for Flow of Hydraulic Cement Mortar2007, 611–612

[27]

ASTM C109-07. American Society for Testing and Materials. Compressive Strength of Hydraulic Cement Mortars (using 2-in or 50-mm Cube Specimens)2007, 64–68

[28]

IS 5816:1999. Splitting tensile strength of concrete- Method of Test, Bureau of Indian standards1999

[29]

Quercia GSpiesz PHusken GBrouwers J. Effects of amorphous nano-silica additions on mechanical durability performance of SCC mixtures. In: International Congress on Durability of Concrete, Trondheim, Norway2012

[30]

Sobolev KLin ZFlores-Vivian IPradoto R. Nano-Engineered Cements with Enhanced Mechanical Performance. Journal of the American Ceramic Society201699(2): 564–572

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2675KB)

2246

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/