Numerical investigation and optimal design of fiber Bragg grating based wind pressure sensor

Xiangjie WANG , Danhui DAN , Rong XIAO , Xingfei YAN

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 286 -292.

PDF (834KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 286 -292. DOI: 10.1007/s11709-017-0415-9
Research Article
Research Article

Numerical investigation and optimal design of fiber Bragg grating based wind pressure sensor

Author information +
History +
PDF (834KB)

Abstract

A wind pressure sensor based on fiber Bragg grating (FBG) for engineering structure was investigated in this paper. We established a transaction model of wind pressure to strain and proposed a method of temperature compensation. By finite element analysis, the basic parameters of the sensor were optimized with the aim of maximum strain under the basic wind pressure proposed in relative design code in China taking geometrical non-linearity into consideration. The result shows that the wind pressure sensor we proposed is well performed and have good sensing properties, which means it is a technically feasible solution.

Keywords

wind pressure measurement / wind pressure sensor / fiber Bragg grating / optimal design

Cite this article

Download citation ▾
Xiangjie WANG, Danhui DAN, Rong XIAO, Xingfei YAN. Numerical investigation and optimal design of fiber Bragg grating based wind pressure sensor. Front. Struct. Civ. Eng., 2017, 11(3): 286-292 DOI:10.1007/s11709-017-0415-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davenport A G . How can we simplify and generalize wind loads? Journal of Wind Engineering and Industrial Aerodynamics199554/55: 657–669

[2]

Simiu EScanlan  R H. Wind Effects on Structures. New Jersey: Wiley1996

[3]

Campbell SKwok  K C CHitchcock  P ATse  K TLeung  H Y. Field measurements of natural periods of vibration and structural damping of wind-excited tall residential buildings. Wind and Structures20075(5): 401–420

[4]

Holmes J D. Effective static load distributions in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics200290(2): 91–109

[5]

Goswami IScanlan  R HJones  N P. Vortex-induced vibration of circular-cylinders. I: Experimental-dataJournal of Engineering Mechanics1993119(11): 2270–2287

[6]

Richardson G M Surry D . Comparisons of wind-tunnel and full-scale surface pressure measurements on low-rise pitched-roof buildings. Journal of Wind Engineering and Industrial Aerodynamics199138(2): 249–256

[7]

Okada HHa  Y C. Comparison of wind tunnel and full-scale pressure measurement tests on the Texas Texh Building. Journal of Wind Engineering and Industrial Aerodynamics199243(1): 1601–1612

[8]

Kasperski M. Specification of the design wind load based on wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics200391(4): 527–541

[9]

Murakami S. Current status and future trends in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics199767: 3–34

[10]

Hsiao S VShemdim  O H. Measurements of wind velocity and pressure with a wave follower during MARSEN. Journal of Geophysical Research: Oceans1983,  88(C14): 9841–9849

[11]

Yoshida MKondo  KSuzuki M . Fluctuating wind pressure measured with tubing system. Journal of Wind Engineering and Industrial Aerodynamics199242(1): 987–998

[12]

Abe MFujino  YYanagihara M Sato M. Monitoring of hakucho suspension bridge by ambient vibration measurement.  Optical Engineering (Redondo Beach, Calif.)20003995: 237–244

[13]

Apperley L WPitsis  N G. Model/full-scale pressure measurements on a grandstand. Journal of Wind Engineering and Industrial Aerodynamics198623: 99–111

[14]

Pitsis N GApperley  L W. Further full-scale and model pressure measurements on a cantilever grandstand. Journal of Wind Engineering and Industrial Aerodynamics199138(2): 439–448

[15]

Yoshida MKondo  KSuzuki M . Fluctuating wind pressure measured with tubing system. Journal of Wind Engineering and Industrial Aerodynamics199242(1): 987–998

[16]

Engler R HKlein  CTrinks O . Pressure sensitive paint systems for pressure distribution measurements in wind tunnels and turbomachines. Measurement Science & Technology200011(7): 1077–1085

[17]

Klein CEngler  R HHenne  USachs W E . Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel. Experiments in Fluids200539(2): 475–483

[18]

Liu ZPrevatt  D OAponte-Bermudez  L DGurley K R Reinhold T A Akins R E . Field measurement and wind tunnel simulation of hurricane wind loads on a single family dwelling. Engineering Structures200931(10): 2265–2274

[19]

Dan D HXiao  RBai W L Wen X L J . Study and design of fiber bragg grating based wind pressure sensor. International Journal of Distributed Sensor Networks201511(6): 745346

[20]

Dan D HXiao  RBai W L Cheng W Zhao Y M . A fiber Bragg grating based wind pressure sensor. CN Patent, No. ZL201320012780.22013

[21]

Dan D HXiao  RBai W L . A calibration device for wind pressure sensor. CN Patent, No. 201320013580.92013

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (834KB)

2537

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/