An investigation on stress distribution effect on multi- piezoelectric energy harvesters

Hailu YANG , Dongwei CAO

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 301 -307.

PDF (431KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 301 -307. DOI: 10.1007/s11709-017-0404-z
RESEARCH ARTICLE
RESEARCH ARTICLE

An investigation on stress distribution effect on multi- piezoelectric energy harvesters

Author information +
History +
PDF (431KB)

Abstract

With the fast development of piezoelectric materials and due to its green and renewable characteristics, the piezoelectric energy harvesting technology has been paid more and more attention by pavement engineers. The stress distribution will significantly affect the piezoelectric material performance. In this paper, the effects of multiple piezoelectric elements on the generation of electrical energy and output power are studied. In the case of constant external load, the number of the piezoelectric units does not necessarily produce more energy. When the same multi piezoelectric units work together, if the stress state of the piezoelectric units is different, the total output energy affected by the connection mode. For uneven stress distribution, the optimal output mode is that each of the piezoelectric units rectified before connected in parallel.

Keywords

piezoelectric transducer / uneven stress / impedance matching / optimal energy output

Cite this article

Download citation ▾
Hailu YANG, Dongwei CAO. An investigation on stress distribution effect on multi- piezoelectric energy harvesters. Front. Struct. Civ. Eng., 2017, 11(3): 301-307 DOI:10.1007/s11709-017-0404-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hou YWang LYue PPauli TSun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering201426(4): 684–691

[2]

Hou YWang LYue PSun W. Fracture Failure in Crack interaction of Asphalt Binder by Using a Phase Field Approach. Materials and Structures201548(9): 2997–3008

[3]

Hou YWang LPauli TSun W. Investigation of the Asphalt Self-healing Mechanism Using a Phase-Field Model. Journal of Materials in Civil Engineering201527(3): 04014118

[4]

Torres E O, Rincón-Mora G A.Long-lasting, self-sustaining, and energy-harvesting system-in-package (sip) wireless micro-sensor solution. Int.conf.on Energy Environment & Disasters2005

[5]

Xiong HWang LWang DDruta C. Piezoelectric Energy Harvesting from Traffic Induced Deformation of Pavements. International Journal of Pavement Research and Technology20125(5): 333–337

[6]

Duarte FCasimiro FCorreia DMendes RFerreira A. A new pavement energy harvest system. International Renewable and Sustainable Energy Conference2013: 408–413

[7]

Zhao HTao YNiu YLing J. Harvesting Energy from Asphalt Pavement by Piezoelectric Generator. Journal of Wuhan University of Technology-Mater. Sci. Ed201429(5): 933–937

[8]

Kim SShen JAhad M. Piezoelectric-Based Energy Harvesting Technology for Roadway Sustainability. International Journal of Applied Science and Technology20155(1): 759–765

[9]

Xiong HWang L. Piezoelectric energy harvester for public roadway: on-site installation and evaluation. Applied Energy2016174: 101–107

[10]

Xue HHu YWang Q M. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control200855(9): 2104–2108

[11]

Erturk ARenno J MInman D J. Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. Journal of Intelligent Material Systems and Structures200820(5): 529–544

[12]

Ali S FFriswell M IAdhikari S. Analysis of energy harvesters for highway bridges. Journal of Intelligent Material Systems and Structures201122(16): 1929–1938

[13]

Chure M CWu LWu K KTung C CLin J SMa W C. Power generation characteristics of PZT piezoelectric ceramics using drop weight impact techniques: effect of dimensional size. Ceramics International201440(1): 341–345

[14]

Xu CLiang ZRen BDi WLuo HWang DWang KChen Z. Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam. Journal of Applied Physics2013114(11): 114507, 114507–5

[15]

Ferrari MFerrari VGuizzetti MAndò BBaglio STrigona C. Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sensors and Actuators. A, Physical2010162(2): 425–431

[16]

Uchino K. Ferroelectric devices. CRC Press, New York2010.

[17]

Platt S RFarritor SHaider H. On low-frequency electric power generation with PZT ceramics. IEEE/ASME Transactions on Mechatronics200510(2): 240–252

[18]

Guo MMotamed ATan Y QBhasin A. Investigating the Interaction between Asphalt Binder and Fresh and Simulated RAP Aggregate. Materials & Design2016105: 25–33

[19]

Guo MTan Y QZhou S W. Multiscale Test Research on Interfacial Adhesion Property of Cold Mix Asphalt. Construction & Building Materials201468: 769–776

[20]

HouY, SunW, DasP, SongX, WangL, GeZ, HuangY. Coupled Navier-Stokes Phase-Field Model to Evaluate the Microscopic Phase Separation in Asphalt Binder under Thermal Loading. Journal of Materials in Civil Engineering, 2016, 28(10):04016100

[21]

HouY, SunF, SunW, GuoM, XingC, WuJ. Quasibrittle Fracture Modeling of PreFlawed Bitumen Using a Diffuse Interface Model. Advances in Materials Science and Engineering, 2016, (6): 1–7

[22]

HouY, HuangY, SunF, GuoM. Fractal Analysis on Asphalt Mixture Using a Two-Dimensional Imaging Technique. Advances in Materials Science and Engineering, 2016, (2): 1–7

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (431KB)

3104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/