Instantaneous deflection of light-weight concrete slabs

Behnam VAKHSHOURI , Shami NEJADI

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 412 -423.

PDF (758KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 412 -423. DOI: 10.1007/s11709-017-0416-8
Research Article
Research Article

Instantaneous deflection of light-weight concrete slabs

Author information +
History +
PDF (758KB)

Abstract

Construction loading before the age of 28 d can have the most significant effects on the slabs, especially for multi-story structures. The changing properties of the young concrete complicate the prediction of serviceability design requirements also. An experimental investigation is performed on four simply supported Light-Weight Concrete (LWC) one-way slabs subjected to immediate loading at 14 d. Effects of aggregate type, loading levels and cracking moment together with the influences of ultimate moment capacity and service moment on the instantaneous deflection of slabs are studied. Comparison of the obtained results with predictions of existing models in the literature shows considerable differences between the recorded and estimated instantaneous deflection of LWC slabs. Based on sensitivity analysis of the effective parameters, a new equation is proposed and verified to predict the instantaneous deflection of LWC slabs subjected to loading at the age of 14 d.

Keywords

instantaneous deflection / light-weight concrete / expanded polystyrene / effective moment of inertia / cracking moment / moment capacity / service moment

Cite this article

Download citation ▾
Behnam VAKHSHOURI, Shami NEJADI. Instantaneous deflection of light-weight concrete slabs. Front. Struct. Civ. Eng., 2017, 11(4): 412-423 DOI:10.1007/s11709-017-0416-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mazzotti CSavoia M. Long-term deflection of reinforced self-consolidating concrete beams. ACI Structural Journal2009106(06): 772–781

[2]

Yoğurtcu ERamyar K. Self-compacting lightweight aggregate concrete: Design and experimental study. Magazine of Concrete Research200961(7): 519–527

[3]

Güneyisi EGesoğlu MBooya E. Fresh properties of self-compacting cold bonded fly ash lightweight aggregate concrete with different mineral admixtures. Materials and Structures201245(12): 1849–1859

[4]

Mazaheripour HGhanbarpour SMirmoradi S HHosseinpour I. The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Construction & Building Materials201125(1): 351–358

[5]

Vakhshouri BNejadi S. Mix design of light-weight self-compacting concrete. Case Studies in Construction Materials20164: 1–14

[6]

Xu YJiang LXu JLi Y. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Construction & Building Materials201227(1): 32–38

[7]

Trussoni MHays C DZollo R F. Fracture properties of concrete containing expanded polystyrene aggregate replacement. ACI Materials Journal2013110(5): 549–557

[8]

Sabaa BRavindrarajah R S. Engineering properties of lightweight concrete containing crushed expanded polystyrene waste. In: Materials Research Society, 1997, Fall Meeting, Symposium MM, Advances in Materials for Cementitious Composites1997

[9]

Scanlon ABischoff P H. Shrinkage restraint and loading history effects on deflections of flexural members. ACI Structural Journal2008105(4): 498

[10]

Vakhshouri B. Time-dependent bond transfer length under pure tension in one way slabs. Structural Engineering and Mechanics201660(2): 301–312

[11]

Li YLiu NChen B. Properties of lightweight concrete composed of magnesia phosphate cement and expanded polystyrene aggregates. Materials and Structures201548(1-2): 269–276

[12]

Achintha P MBurgoyne C J. Moment-curvature and strain energy of beams with external fiber-reinforced polymer reinforcement. ACI Structural Journal2009106(1): 20–29

[13]

FazaS, Gangarao  H. Pre-and post-cracking deflection behaviour of concrete beams reinforced with fibre-reinforced plastic rebars. In: Proceedings of the First International Conference on Advance Composite Materials in Bridges and Structures (ACMBS-I). Sherbrooke: Canadian Society of Civil Engineers1992

[14]

Yost J RGross S PDinehart D W. Effective moment of inertia for glass fiber-reinforced polymer-reinforced concrete beams. ACI Structural Journal2003100(6): 732–739

[15]

Rafi M MNadjai AAli FTalamona D. Aspects of behaviour of CFRP reinforced concrete beams in bending. Construction & Building Materials200822(3): 277–285

[16]

Alsayed SAl-Salloum YAlmusallam T. Performance of glass fiber reinforced plastic bars as a reinforcing material for concrete structures. Composites. Part B, Engineering200031(6): 555–567

[17]

Hall TGhali A. Long-term deflection prediction of concrete members reinforced with glass fibre reinforced polymer bars. Canadian Journal of Civil Engineering200027(5): 890–898

[18]

Fikry A MThomas C. Development of a model for the effective moment of inertia of one-way reinforced concrete elements. ACI Structural Journal199895(4)

[19]

Benmokrane BChaallal OMasmoudi R. Flexural response of concrete beams reinforced with FRP reinforcing bars. ACI Structural Journal199693(1): 46–55

[20]

Branson D E. Instantaneous and Time-Dependent Deflections of Simple and Continues Reinforced Concrete Beams. HPR Report, No.7 Part 1. Alabama Highway Department/U.S. Bureau of Public Roads1965

[21]

AS-1012.14, Methods of Testing Concrete—Method for Securing and Testing Cores from Hardened Concrete for Compressive Strength. Standards Australia1991

[22]

ASTM-C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. American Society of Testing and Materials2000

[23]

AS-1012.17-97, Methods of Testing Concrete—Determination of the Static Chord Modulus of Elasticity and Poisson’s Ratio of Concrete Specimens. Standards Australia2014

[24]

ASTM-C469/C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. American Society of Testing and Materials2000

[25]

AS-1141, Methods for Sampling and Testing Aggregates. Standards Australia2011

[26]

T235. R., Aggregate Least Dimension. Roads AND MARITIME SERVICES (RMS) NSW, Australia2006

[27]

T239. R., Aggregate fractured faces. Roads and Maritime Services (RMS) NSW, Australia2006

[28]

Bischoff P H. Deflection calculation of FRP reinforced concrete beams based on modifications to the existing Branson equation. Journal of Composites for Construction200711(1): 4–14

[29]

Alshaikh A HAl-Zaid R. Effect of reinforcement ratio on the effective moment of inertia of reinforced concrete beams. ACI Structural Journal199390(2): 144–149

[30]

ACI-318-08. Building Code Requirements for Structural Concrete and Commentary. ACI Committee, American Concrete Institute, International Organization for Standardization2008

[31]

ACI-435, Control of Deflection in Concrete Structures, ACI 435R-95. American Concrete Institute2000

[32]

AS-3600-09, Concrete Structures. Standards Australia2009

[33]

Bischoff P HGross S P. Equivalent moment of inertia based on integration of curvature. Journal of Composites for Construction201015(3): 263–273

[34]

Bischoff P HPaixao R. Tension stiffening and cracking of concrete reinforced with glass fiber reinforced polymer (GFRP) bars. Canadian Journal of Civil Engineering200431(4): 579–588

[35]

CEBFIP-MC90. CEB-FIP Model Code (MC-90).London: Thomas Telford Ltd., 1993

[36]

Newhook J. Reinforcing Concrete Structures with Fibre Reinforced Polymers. ISIS Canada: Design Manual No.3, The Canadian Network of Centres of excellence on intelligent sensing for innovative structures2001

[37]

ACI-224. Cracking of Concrete Members in Direct Tension. In: ACI Journal Proceedings. Farming Hills: American Concrete Institute, 1986

[38]

AS-1478.1, Methods for Sampling and Testing Aggregates, Particle Size Distribution-Sieving Method. Standards Australia2000

[39]

AS-3972, General Purpose and Blended ceMents. Standards Australia2010

[40]

AS-2350, Methods of testing Portland and Blended Cements. Standards Australia2006

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (758KB)

2769

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/