Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG , Jianzhuang XIAO , Shiying XU , Chunhui WANG

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 158 -168.

PDF (2476KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 158 -168. DOI: 10.1007/s11709-016-0374-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Author information +
History +
PDF (2476KB)

Abstract

A push-out test program was designed and conducted to study the meso-scale behavior of mortar-aggregate interface for concrete after elevated temperatures ranging from 20°C to 600°C with the concept of modeled concrete (MC) and modeled recycled aggregate concrete (MRAC). The MCs and MRACs were designed with different strength grade of mortar and were exposed to different elevated temperatures. Following that the specimens were cooled to room temperature and push-out tests were conducted. Failure process and mechanical behaviors were analyzed based on failure modes, residual load-displacement curves, residual peak loads and peak displacements. It is found that failure modes significantly depended on specimen type, the elevated temperature and the strength grade of mortar. For MC, major cracks started to propagate along the initial cracks caused by elevated temperatures at about 80% of residual peak load. For MRAC, the cracks appeared at a lower level of load with the increasing elevated temperatures. The cracks connected with each other, formed a failure face and the specimens were split into several parts suddenly when reaching the residual peak load. Residual load-displacement curves of different specimens had similarities in shape. Besides, effect of temperatures and strength grade of mortar on residual peak load and peak displacement were analyzed. For MC and MRAC with higher strength of new hardened mortar, the residual peak load kept constant when the temperature is lower than 400°C and dropped by 43.5% on average at 600°C. For MRAC with lower strength of new hardened mortar, the residual peak load began to reduce when the temperatures exceeded 200°C and reduced by 27.4% and 60.8% respectively at 400°C and 600°C. The properties of recycled aggregate concrete (RAC) may be more sensitive to elevated temperatures than those of natural aggregate concrete (NAC) due to the fact that the interfacial properties of RAC are lower than those of NAC, and are deteriorated at lower temperatures.

Keywords

mortar-aggregate interface / push-out test / elevated temperatures / modeled concrete (MC) / modeled recycled aggregate concrete (MRAC)

Cite this article

Download citation ▾
Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG. Experimental study on behavior of mortar-aggregate interface after elevated temperatures. Front. Struct. Civ. Eng., 2017, 11(2): 158-168 DOI:10.1007/s11709-016-0374-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chang Y FChen Y HSheu M SYao G C. Residual stress-strain relationship for concrete after exposure to high temperatures. Cement and Concrete Research200636(10): 1999–2005

[2]

Rostasy F SHinrichsmeyer K. Structural alterations in concrete due to thermal and mechanical stresses. In: Proceedings of the International Conference on Materials Science to Construction Materials Engineering. Cersailles1987

[3]

Sideny MYoung J FDarwin D. Concrete. Translated by Wu K, Zhang X, Yao W,  Beijing: Chemical Industry Press, 2005

[4]

Xiao J ZDing T. Research on recycled concrete and its utilization in building structure in China. Frontiers of Structural and Civil Engineering20137(3): 215–226

[5]

Mehta P KMonteiro P J M. Concrete structure properties and materials. 2nd ed. Englewood Cliffs: prentice Hall1993

[6]

Rao G APrasad R. Influence of the roughness of aggregate surface on the interface bond strength. Cement and Concrete Research200232(2): 253–257

[7]

Akcaoglu TTokyay MCelik T. Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression. Cement and Concrete Composites200426(6): 633–638

[8]

Guinea G VEl-sayed KRocco C GElices MPlanas J. The effect of the bond between the matrix and the aggregates on the cracking mechanism and fracture parameters of concrete. Cement and Concrete Research200232(12): 1961–1970

[9]

Poon C SShui Z HLam L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction & Building Materials200418(6): 461–468

[10]

Xiao J ZLi W GSun Z HLange D AShah S P. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cement and Concrete Composites201337: 276–292

[11]

Diamond SHuang J D. The ITZ in concrete–a different view based on image analysis and SEM observations. Cement and Concrete Composites200123(2-3): 179–188

[12]

Xotta GMazzucco GSalomoni V AMajorana C EWillam K J. Composite behavior of concrete materials under high temperatures. International Journal of Solids and Structures201564: 86–99

[13]

Shah S PWinter G. Inelastic behavior and fracture of concrete. ACI Special Publications196820: 5–28

[14]

Buyukozturk ONilson A HSlate F O. Stress-strain response and fracture of concrete in biaxial loading. ACI Journal Proceedings197168: 590–599

[15]

Xiao J ZLi W GSun Z HShah S P. Crack propagation in recycled aggregate concrete under uniaxial compressive loading. ACI Materials Journal2012109(4): 451–461

[16]

Xiao J ZLi W GCorr D JShah S P. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cement and Concrete Research201352(10): 82–99

[17]

Caliskan S. Aggregate/mortar interface: Influence of silica fume at the micro- and macro-level. Cement and Concrete Composites200325(4): 557–564

[18]

Zhang Y FLiu HQi L. Simulation of fiver pushing-out test. J Wuhan Univ Technol20096(6): 965–969

[19]

Park RPaulay T. Reinforced concrete structures. New York: John Wiley &Son Inc, 1975

[20]

Chan Y NPeng G FAnson M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cement and Concrete Composites199921(1): 23–27

[21]

Ma Q MGuo R XZhao Z MLin ZHe K. Mechanical properties of concrete at high temperature–A review. Construction & Building Materials201593: 371–383

[22]

Piasta JSawicz ZRudzinski L. Changes in the structure of hardened cement paste due to high temperature. Materiales de Construcciin198417(4): 291–296

[23]

Peng G FHuang Z S. Change in microstructure of hardened cement paste subjected to elevated temperatures. Construction & Building Materials200822(4): 593–599

[24]

Ibrahim R KHamid RTaha M R. Fire resistance of high-volume fly ash mortars with nanosilica addition. Construction & Building Materials201236: 779–786

[25]

Taylor H F W. Cement chemistry. 2nd ed. Thomas Telford1997

[26]

Lin W MLin T DPowers-Couche L J. Microstructures of fire-damaged concrete. ACI Materials Journal199693(3): 199–205

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2476KB)

3912

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/