Approximation of structural damping and input excitation force

Mohammad SALAVATI

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 244 -254.

PDF (4077KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 244 -254. DOI: 10.1007/s11709-016-0371-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Approximation of structural damping and input excitation force

Author information +
History +
PDF (4077KB)

Abstract

Structural dynamic characteristics are the most significant parameters that play a decisive role in structural damage assessment. The more sensitive parameter to the damage is the damping behavior of the structure. The complexity of structural damping mechanisms has made this parameter to be one of the ongoing research topics. Despite all the difficulties in the modeling of damping, there are some approaches like as linear and nonlinear models which are described as the energy dissipation throughout viscous, material or structural hysteretic and frictional damping mechanisms. In the presence of a mathematical model of the damping mechanisms, it is possible to estimate the damping ratio from the theoretical comparison of the damped and un-damped systems. On the other hand, solving the inverse problem of the input force estimation and its distribution to each SDOFs, from the measured structural responses plays an important role in structural identification process. In this paper model-based damping approximation method and a model-less structural input estimation are considered. The effectiveness of proposed methods has been carried out through analytical and numerical simulation of the lumped mass system and the results are compared with reference data. Consequently, high convergence of the comparison results illustrates the satisfactory of proposed approximation methods.

Keywords

structural modal parameters / damping identification method / input excitation force identification / Inverse problem

Cite this article

Download citation ▾
Mohammad SALAVATI. Approximation of structural damping and input excitation force. Front. Struct. Civ. Eng., 2017, 11(2): 244-254 DOI:10.1007/s11709-016-0371-9

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

The structural identification is classified in two scale like entire structure and material scales. In the whole structural level, assorted analysis methods have been extensively used to extract dynamic characteristic based on measurement vibration data as an inverse problem, as well as identifying damage on the structures. The structural dynamic characteristics are the most significant parameters that play a decisive role in structural damage assessment. The significance of these determinants came from the fact that their changes have the physical meaning, such as the variability of the modal frequency, mode shapes and modal damping are related to variability of the structural stiffness, mass and energy dissipation behavior respectively. On the other hand, changing in modal properties is the result of changing in geometry shape and material properties of the structure. In the material scale, damage identification and tracking of effects on mechanical properties are considered as multiscale analysis that contains nano, micro, meso and macro scales. Nanthakumar et al. [] proposed an iterative method to identify damage in piezoelectric structures. In each iteration for different defect configuration, the inverse problem of cracks and voids detection is treated by solving the forward problem with using extended finite element methods (EFEM). The cost function is minimized by performing multilevel coordinate search (MCS) method. Also, the numerical method based on combination of classical shape derivative and the level-set method is used to minimize the cost function in structural optimization [,]. Integrity of XFEM-MCS methodology and proposed numerical method is demonstrated throughout the test problems []. Rabczuk et al. [] considered to the fracture and fragmentation of concrete through simulation of the concrete fragmentation under explosive loading by a meshfree lagrangian and smooth particle hydrodynamics methods. Also, three dimensional discrete cracks modeling in meshfree are considered in Refs. []. Goangseup et al. [] proposed an extended meshfree method for cohesive cracks. Rabczuk et al. [] proposed a three-dimensional meshfree method for arbitrary crack initiation and propagation. Moreover, a three-dimensional meshfree methods for modeling random crack initiation and growth are presented in Ref. []. Various crack tracking techniques are considered which is applicable in three-dimensions in the context of partition of unity methods, especially meshfree methods []. The meshfree method based on the local partition of unity for cohesive cracks are presented in Ref. []. Analysis of prestressed concrete beams under quasi-static loading by choosing coupled element free Galerkin finite element approach are investigated in Ref. []. Two-dimensional approach to model fracture of reinforced concrete structures under ascending static loading conditions are described in Ref. []. Particle methods for modeling reinforced concrete [] which can easily handle large deformations and fracture and the dynamic failure of concrete structures under blast and impact loading are presented [].

Rayleigh damping is the stiffness and mass proportional model which has been used for decades. It is assumed that the only damping related state of the motion is the instantaneous velocity variable []. Despite the all of damping modeling advances, the real structural energy dissipation mechanism is still complicated. Lee [] developed a direct method to identify damping from frequency response function (FRF). To gain more accurate results, the natural mode information is not used. The both viscous damping and internal structural damping mechanisms are identified in separate matrices. H. Yamaguchi, R. Adhikari [] identified modal damping of structural cables by using energy-based representation of modal damping. According to this damping ratio definition the modal damping for each mode is considered as the ratio of the modal dissipated energy per cycle to the modal potential energy. Finally, the damping ratio is semi-analytically evaluated in a different type of bridges to investigate the applicability of energy-based method. Xu et al. [] proposed a neural network-based algorithm for direct identification of structural stiffness and damping parameters by using time domain velocity and displacement responses. The proposed method theoretically based on the comparison of an object structure response with a reference structure which has the same topology and a degree of freedom with that. To investigate the performance of the neural network, the proposed root mean square (RMS) difference vector of velocity and displacement responses are evaluated for both reference and object structure. The results prove that it is an effective index for system identification with a parametric evaluation neural network. To identify multi degree of freedom system’s damping, Slavic et al. [] presented a continuous wavelet transform (CWT) method based on the Gabor wavelet function for possibility of adapting its time and frequency spread. Some uncertainties such as: a description of the instantaneous noise, the edge-effect of the CWT, the frequency-shift of the CWT and the bandwidth of the wavelet function and the selection of the parameters of the Gabor wavelet function of the CWT are considered throughout presenting of three damping identification methods: the cross-section method, the amplitude method and the phase method. The results demonstrate the advantages of using the amplitude and phase methods, which give information about the instantaneous noise and are appropriate for automating the identification process. Min et al. [] proposed a direct identification method by using experimental data. System matrices are identified for non-proportional damping structures by using modal parameters. Consequently, this method can accurately identify the stiffness, mass and damping matrices of the highly damped system, and is the perfect mathematical model for a lumped mass system. Arora [] proposed a new direct structural damping identification method by using complex FRFs and accurate mass and stiffness matrices. In this method damping is modeled as structural damping by using the complex stiffness model. First, the mass and stiffness matrices are updated by using FRF-based updating method, then the damping is identified by using updated mass and stiffness matrices as proposed in this study. The advantage of this method is its ability in the identification of damping in closely spaced mode cases. This method requires a complex FRF matrix of structure so it’s not practicable for using in complicated structures. Different numerical and experimental cases with various damping levels are considered in this study, consequently proposed method is able to identify the experimental FRFs with all levels of damping in the system. Pan and Wang [] presented a new potential damping model in order to identify the exponential damping model. Application of complex modes analysis and its damping identification procedure are investigated. As a result, it’s applicable to identifying both viscous and non-viscous damping in structures. Also, an iterative method is proposed for relaxation factor. Finally, the FE model updating method for the systems with exponential damping is presented based on FRF, in which it is suitable to predict the natural frequencies and FRFs of the systems.

Theoretical development of the proposed methods

Mathematical model-based damping identification

Despite all the difficulties in the modeling of damping, there are some approaches like as a viscous and structural (hysteretic) damping models that have been used for decades. If the exact damping related state of the equation of motion is known, it is possible to identify the exact damping ratio from the comparison of the damped and un-damped systems, but if the exact damping related state of the equation of motion is not known then it is possible to identify the equivalent damping ratio by mentioned comparison. The importance of this kind of approach is that clarification in a damping variation of the structure in the case of unknown damping model. The viscous and hysteretic damping models are used in this study to identify the damping ratio. First, the damped and un-damped systems with viscous damping models are introduced as the second order differential equation of motion for a single degree-of-freedom (SDOF), given by:
mX¨d(t)+c X˙ d( t)+k Xd(t)= Fd(t),
mX¨u(t)+k X˙ u( t)= Fu( t),
where X¨d, X˙d, Xdand Fd are the acceleration, velocity, displacement responses and excitation force of the damped system, and X¨u, Xu , Fu are the acceleration, displacement responses and excitation force of un-damped system, respectively. Also,m is the mass, c is the viscous damping coefficient, k is the stiffness, and t is the time variable. For harmonic excitation, Fourier transform solution is X(t )=X(ω)eiω t and F(t )=F(ω)eiω t. Equation (1) and Eq. (2) become:
(k ωd2m) Xd(ω)+(iω c)X d(ω )=F d(ω ),
(k ωu2m) Xu(ω)=Fu(ω).

Mathematical model-less input force estimation and damping ratio

Numerical investigation

Mathematical model base damping identification

Mathematical models-less input excitation force and damping ratio estimation

Analytical approaches by using the finite element modeling method

Conclusions

References

[1]

Nanthakumar S S Lahmer T Zhuang X Zic GRabczuk  T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering201624(1): 153–176

[2]

Nanthakumar S S Valizadeh N Park H S Rabczuk T . Surface effects on shape and topology optimization of nanostructures. Computational Mechanics201556(1): 97–112

[3]

Nanthakumar S S Lahmer T Rabczuk T . Detection of multiple flaws in piezoelectric structures using XFEM and level sets. Computer Methods in Applied Mechanics and Engineering2014275: 98–112

[4]

Nanthakumar S S Lahmer T Rabczuk T . Detection of flaws in piezoelectric structures using extended FEM. International Journal for Numerical Methods in Engineering201396(6): 373–389

[5]

RabczukT, EiblJ, StempniewskiL . Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444

[6]

RabczukT, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799

[7]

RabczukT, ZiG, BordasS, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455

[8]

RabczukT, Belytschko T. Cracking particles: a simplied meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

[9]

ZiG, Rabczuk T, WallW A . Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382

[10]

RabczukT, BordasS, ZiG. A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

[11]

RabczukT, ZiG, BordasS, Nguyen-Xuan H. A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758

[12]

RabczukT, BordasS, ZiG. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411

[13]

RabczukT, ZiG. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760

[14]

RabczukT., EiblJ.: Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/nite element method, International Journal of Solids andStructures, 2004, 41 (3- 4), 1061–1080

[15]

RabczukT, Akkermann J, EiblJ . A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354

[16]

RabczukT, Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49

[17]

RabczukT, EiblJ. Modeling dynamic failure of concrete with meshfree particle methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897

[18]

Juang J NPappa  R S. Eigen-system realization algorithm for modal parameter identification and model reduction. Journal of Guidance, Control, and Dynamics19858(5): 620–627

[19]

Mohanty PRixen  D J. Identifying mode shapes and modal frequencies by operational modal analysis in the presence of harmonic excitation. Experimental Mechanics200545(3): 213–220

[20]

Moaveni BBarbosa  AConte J P Hemez F M . Uncertainty analysis of modal parameters obtained from three system identification methods. In: Proceedings of the 25th International Modal Analysis Conference (IMAC-XXV). Orlando, USA, 2007

[21]

Amani M GRiera  JCuradelli O . Identification of changes in the stiffness and damping matrices of linear structures through ambient vibrations. Structural Control and Health Monitoring200714(8): 1155–1169

[22]

Yang Y BChen  Y J. A new direct method for updating structural models based on measured modal data. Engineering Structures200931(1): 32–42

[23]

Fan WQiao  P Z. Vibration-based damage identification methods: a review and comparative study. Structural Health Monitoring201110(1): 83–111

[24]

Ozcelik  OSalavati   M. Variability of modal parameter estimations using two different output-only system identification methods. Journal of Testing and Evaluation201341(6): 20120361

[25]

Doebling SWFarrar  ChPrime MB Shevitz DW . Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A Literature Review. Los Alamos National Laboratory Report. LA-13070-MS. UC9001996

[26]

Salawu O S. Detection of structural damage through changes in frequency: A review. Engineering Structures199719(9): 718–723

[27]

Modena CSonda  DZonta D . Damage localization in reinforced concrete structures by using damping measurements, damage assessment of structures. In: Proceedings of the international conference on damage assessment of structures, DAMAS 991999, 132–141

[28]

Kawiecki G.Modal damping measurements for damage detection. In: European COST F3 conference on system identification and structural health monitoring. Madrid, Spain, 2000, 651–658

[29]

Zonta DModena  CBursi OS . Analysis of dispersive phenomena in damaged structures. In: European COST F3 conference on system identification and structural health monitoring. Madrid, Spain, 2000, 801–810

[30]

Zou YTong  LSteven G P . Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures–a review. Journal of Sound and Vibration2000230(2): 357–378

[31]

Curadelli R O Riera J D Ambrosini D Amani M G . Damage detection by means of structural damping identification. Engineering Structures200830(12): 3497–3504

[32]

Gomaa F RNasser  A AAhmed Sh   O. Sensitivity of Modal Parameters to Detect Damage through Theoretical and Experimental Correlation. International Journal of Current Engineering and Technology20144(1): 172–181

[33]

Wang M LKreitinger  T J. Kreitinger, Identification of force from response data of a nonlinear system. Soil Dynamics and Earthquake Engineering199413(4): 267–280

[34]

Ma C KLin  D C. Input forces estimation of a cantilever beam. Inverse Problems in Engineering20008(6): 511–528

[35]

Steltzner A D, Kammer D C.Input Force Estimation Using an Inverse Structural Filter. IMAC XVII1999

[36]

Ma C KChang  J MLin  D C. Input forces estimation of beam structures by an inverse method. Journal of Sound and Vibration2003259(2): 387–407

[37]

Ekke JOosterhuis, Wouter   BEidhof, Peter   J.Mvan der  Hoogtde Boer  A. Force prediction via the inverse FRF using experimental and numerical data from demonstrator with tunable nonlinearities. In: Proceedings of the 13th international congress on sound and vibration. Vienna, Austria, 2006

[38]

Hisham. A. Al-Khazali. Calculations of frequency response functions (FRF) using computer smart office software and nyquist plot under gyroscopic effect rotation. International Journal of Computer Science and Information Technology & Security20111(2): 90–97

[39]

Foss  GNiezrecki   C. Special topics in structural dynamics volume 6. In: Proceeding of the 32nd IMAC. A conference and exposition of structural dynamics, 2014

[40]

Unavane  T V Panse  Dr. M. S . New method for online frequency response function estimation using circular queue. International Journal for research in emerging science and technology20152(6): 134–137

[41]

Rayleigh L. Theory of Sound (two volumes). New York: Dover Publications, 1897

[42]

Lee J HKim  J. Direct identification of damping parameters from FRF and its application to compressor engineering. In: Proceedings of International Compressor Conference at Purdue University2000, 869–876

[43]

Yamaguchi HAdhikari  R. Energy-Based evaluation of modal damping in structural cables with and without damping treatment. Journal of Sound and Vibration1995181(1): 71–83

[44]

Xu BWu  ZChen G Yokoyama K . Direct identification of structural parameters from dynamic responses with neural networks. Engineering Applications of Artificial Intelligence200417(8): 931–943

[45]

Slavic JSimonovski  IBoltezar M . damping identification using a continuous wavelet transform: application to real data. Journal of Sound and Vibration2003262(2): 291–307

[46]

Min CPark  HPark S PARK  H PARK  S . Direct identification of non-proportional modal damping matrix for lumped mass system using modal parameters. Journal of Mechanical Science and Technology201226(4): 993–1002

[47]

Arora V. Direct structural damping identification method using complex FRFs. Journal of Sound and Vibration2015339: 304–323

[48]

Pan YWang  Y. Iterative method for exponential damping identification. Computer-Aided Civil and Infrastructure Engineering201530(3): 229–243

[49]

Kimball A.Vibration Damping, Including the Case of Solid Damping, Trans. ASME, APM51–52, 1929

[50]

Thomson W T. Theory of Vibration with Applications. Prentice-Hall, Englewood Cliffs, NJ1972

[51]

Lazan B J. Damping of Materials and Members in Structural Mechanics. Oxford: Pergamom Press1968

[52]

Frizzarin MFeng  M QFranchetti  PSoyoz S Modena C . Damage detection based on damping analysis of ambient vibration data. Structural Control and Health Monitoring201017: 368-385

[53]

Montalvão D Silva J M M . An alternative method to the identification of the modal damping factor based on the dissipated energy. Mechanical Systems and Signal Processing201554–55: 108–123

[54]

O’Callahan J Piergentili F . Force estimation using operational data. In: International Modal Analysis Conference 1996. Dearborn, USA, 1996

[55]

Hong L LHwang  W L. Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan. Earthquake Engineering & Structural Dynamics200029(3): 327–337

[56]

Ma C KChang  J MLin  D C. Input forces estimation of beam structures by an inverse method. Journal of Sound and Vibration2003259(2): 387–407

[57]

Suwała GJankowski  Ł. A model-less method for added mass identification. Diffusion and Defect Data, Solid State Data. Part B, Solid State Phenomena2009147–149: 570–575

[58]

Khoo S YIsmail  ZKong K K Ong Z C Noroozi S Chong W T Rahman A G A . Impact force identification with pseudo-inverse method on a light weight structure for under-determined, even-determined and over-determined cases. International Journal of Impact Engineering201463: 52–62

[59]

Rajkumar  SDewan  ABhagat Sujatha   CNarayanan S . Comparison of various techniques used for estimation of input force and computation of frequency response function (FRF) from measured response data. In: the 22nd International Congress on Sound and Vibration- ICSV22. Florence, Italy, 12–16, July, 2015

[60]

Chopra A K. Dynamics of structures. 3rd ed. Prentice-Hall, Upper Saddle River (NJ)2007

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (4077KB)

3570

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/