Approximation of structural damping and input excitation force

Mohammad SALAVATI

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 244 -254.

PDF (4077KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 244 -254. DOI: 10.1007/s11709-016-0371-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Approximation of structural damping and input excitation force

Author information +
History +
PDF (4077KB)

Abstract

Structural dynamic characteristics are the most significant parameters that play a decisive role in structural damage assessment. The more sensitive parameter to the damage is the damping behavior of the structure. The complexity of structural damping mechanisms has made this parameter to be one of the ongoing research topics. Despite all the difficulties in the modeling of damping, there are some approaches like as linear and nonlinear models which are described as the energy dissipation throughout viscous, material or structural hysteretic and frictional damping mechanisms. In the presence of a mathematical model of the damping mechanisms, it is possible to estimate the damping ratio from the theoretical comparison of the damped and un-damped systems. On the other hand, solving the inverse problem of the input force estimation and its distribution to each SDOFs, from the measured structural responses plays an important role in structural identification process. In this paper model-based damping approximation method and a model-less structural input estimation are considered. The effectiveness of proposed methods has been carried out through analytical and numerical simulation of the lumped mass system and the results are compared with reference data. Consequently, high convergence of the comparison results illustrates the satisfactory of proposed approximation methods.

Keywords

structural modal parameters / damping identification method / input excitation force identification / Inverse problem

Cite this article

Download citation ▾
Mohammad SALAVATI. Approximation of structural damping and input excitation force. Front. Struct. Civ. Eng., 2017, 11(2): 244-254 DOI:10.1007/s11709-016-0371-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nanthakumar S S Lahmer T Zhuang X Zic GRabczuk  T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering201624(1): 153–176

[2]

Nanthakumar S S Valizadeh N Park H S Rabczuk T . Surface effects on shape and topology optimization of nanostructures. Computational Mechanics201556(1): 97–112

[3]

Nanthakumar S S Lahmer T Rabczuk T . Detection of multiple flaws in piezoelectric structures using XFEM and level sets. Computer Methods in Applied Mechanics and Engineering2014275: 98–112

[4]

Nanthakumar S S Lahmer T Rabczuk T . Detection of flaws in piezoelectric structures using extended FEM. International Journal for Numerical Methods in Engineering201396(6): 373–389

[5]

RabczukT, EiblJ, StempniewskiL . Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444

[6]

RabczukT, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799

[7]

RabczukT, ZiG, BordasS, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455

[8]

RabczukT, Belytschko T. Cracking particles: a simplied meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

[9]

ZiG, Rabczuk T, WallW A . Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382

[10]

RabczukT, BordasS, ZiG. A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

[11]

RabczukT, ZiG, BordasS, Nguyen-Xuan H. A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758

[12]

RabczukT, BordasS, ZiG. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411

[13]

RabczukT, ZiG. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760

[14]

RabczukT., EiblJ.: Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/nite element method, International Journal of Solids andStructures, 2004, 41 (3- 4), 1061–1080

[15]

RabczukT, Akkermann J, EiblJ . A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354

[16]

RabczukT, Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49

[17]

RabczukT, EiblJ. Modeling dynamic failure of concrete with meshfree particle methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897

[18]

Juang J NPappa  R S. Eigen-system realization algorithm for modal parameter identification and model reduction. Journal of Guidance, Control, and Dynamics19858(5): 620–627

[19]

Mohanty PRixen  D J. Identifying mode shapes and modal frequencies by operational modal analysis in the presence of harmonic excitation. Experimental Mechanics200545(3): 213–220

[20]

Moaveni BBarbosa  AConte J P Hemez F M . Uncertainty analysis of modal parameters obtained from three system identification methods. In: Proceedings of the 25th International Modal Analysis Conference (IMAC-XXV). Orlando, USA, 2007

[21]

Amani M GRiera  JCuradelli O . Identification of changes in the stiffness and damping matrices of linear structures through ambient vibrations. Structural Control and Health Monitoring200714(8): 1155–1169

[22]

Yang Y BChen  Y J. A new direct method for updating structural models based on measured modal data. Engineering Structures200931(1): 32–42

[23]

Fan WQiao  P Z. Vibration-based damage identification methods: a review and comparative study. Structural Health Monitoring201110(1): 83–111

[24]

Ozcelik  OSalavati   M. Variability of modal parameter estimations using two different output-only system identification methods. Journal of Testing and Evaluation201341(6): 20120361

[25]

Doebling SWFarrar  ChPrime MB Shevitz DW . Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A Literature Review. Los Alamos National Laboratory Report. LA-13070-MS. UC9001996

[26]

Salawu O S. Detection of structural damage through changes in frequency: A review. Engineering Structures199719(9): 718–723

[27]

Modena CSonda  DZonta D . Damage localization in reinforced concrete structures by using damping measurements, damage assessment of structures. In: Proceedings of the international conference on damage assessment of structures, DAMAS 991999, 132–141

[28]

Kawiecki G.Modal damping measurements for damage detection. In: European COST F3 conference on system identification and structural health monitoring. Madrid, Spain, 2000, 651–658

[29]

Zonta DModena  CBursi OS . Analysis of dispersive phenomena in damaged structures. In: European COST F3 conference on system identification and structural health monitoring. Madrid, Spain, 2000, 801–810

[30]

Zou YTong  LSteven G P . Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures–a review. Journal of Sound and Vibration2000230(2): 357–378

[31]

Curadelli R O Riera J D Ambrosini D Amani M G . Damage detection by means of structural damping identification. Engineering Structures200830(12): 3497–3504

[32]

Gomaa F RNasser  A AAhmed Sh   O. Sensitivity of Modal Parameters to Detect Damage through Theoretical and Experimental Correlation. International Journal of Current Engineering and Technology20144(1): 172–181

[33]

Wang M LKreitinger  T J. Kreitinger, Identification of force from response data of a nonlinear system. Soil Dynamics and Earthquake Engineering199413(4): 267–280

[34]

Ma C KLin  D C. Input forces estimation of a cantilever beam. Inverse Problems in Engineering20008(6): 511–528

[35]

Steltzner A D, Kammer D C.Input Force Estimation Using an Inverse Structural Filter. IMAC XVII1999

[36]

Ma C KChang  J MLin  D C. Input forces estimation of beam structures by an inverse method. Journal of Sound and Vibration2003259(2): 387–407

[37]

Ekke JOosterhuis, Wouter   BEidhof, Peter   J.Mvan der  Hoogtde Boer  A. Force prediction via the inverse FRF using experimental and numerical data from demonstrator with tunable nonlinearities. In: Proceedings of the 13th international congress on sound and vibration. Vienna, Austria, 2006

[38]

Hisham. A. Al-Khazali. Calculations of frequency response functions (FRF) using computer smart office software and nyquist plot under gyroscopic effect rotation. International Journal of Computer Science and Information Technology & Security20111(2): 90–97

[39]

Foss  GNiezrecki   C. Special topics in structural dynamics volume 6. In: Proceeding of the 32nd IMAC. A conference and exposition of structural dynamics, 2014

[40]

Unavane  T V Panse  Dr. M. S . New method for online frequency response function estimation using circular queue. International Journal for research in emerging science and technology20152(6): 134–137

[41]

Rayleigh L. Theory of Sound (two volumes). New York: Dover Publications, 1897

[42]

Lee J HKim  J. Direct identification of damping parameters from FRF and its application to compressor engineering. In: Proceedings of International Compressor Conference at Purdue University2000, 869–876

[43]

Yamaguchi HAdhikari  R. Energy-Based evaluation of modal damping in structural cables with and without damping treatment. Journal of Sound and Vibration1995181(1): 71–83

[44]

Xu BWu  ZChen G Yokoyama K . Direct identification of structural parameters from dynamic responses with neural networks. Engineering Applications of Artificial Intelligence200417(8): 931–943

[45]

Slavic JSimonovski  IBoltezar M . damping identification using a continuous wavelet transform: application to real data. Journal of Sound and Vibration2003262(2): 291–307

[46]

Min CPark  HPark S PARK  H PARK  S . Direct identification of non-proportional modal damping matrix for lumped mass system using modal parameters. Journal of Mechanical Science and Technology201226(4): 993–1002

[47]

Arora V. Direct structural damping identification method using complex FRFs. Journal of Sound and Vibration2015339: 304–323

[48]

Pan YWang  Y. Iterative method for exponential damping identification. Computer-Aided Civil and Infrastructure Engineering201530(3): 229–243

[49]

Kimball A.Vibration Damping, Including the Case of Solid Damping, Trans. ASME, APM51–52, 1929

[50]

Thomson W T. Theory of Vibration with Applications. Prentice-Hall, Englewood Cliffs, NJ1972

[51]

Lazan B J. Damping of Materials and Members in Structural Mechanics. Oxford: Pergamom Press1968

[52]

Frizzarin MFeng  M QFranchetti  PSoyoz S Modena C . Damage detection based on damping analysis of ambient vibration data. Structural Control and Health Monitoring201017: 368-385

[53]

Montalvão D Silva J M M . An alternative method to the identification of the modal damping factor based on the dissipated energy. Mechanical Systems and Signal Processing201554–55: 108–123

[54]

O’Callahan J Piergentili F . Force estimation using operational data. In: International Modal Analysis Conference 1996. Dearborn, USA, 1996

[55]

Hong L LHwang  W L. Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan. Earthquake Engineering & Structural Dynamics200029(3): 327–337

[56]

Ma C KChang  J MLin  D C. Input forces estimation of beam structures by an inverse method. Journal of Sound and Vibration2003259(2): 387–407

[57]

Suwała GJankowski  Ł. A model-less method for added mass identification. Diffusion and Defect Data, Solid State Data. Part B, Solid State Phenomena2009147–149: 570–575

[58]

Khoo S YIsmail  ZKong K K Ong Z C Noroozi S Chong W T Rahman A G A . Impact force identification with pseudo-inverse method on a light weight structure for under-determined, even-determined and over-determined cases. International Journal of Impact Engineering201463: 52–62

[59]

Rajkumar  SDewan  ABhagat Sujatha   CNarayanan S . Comparison of various techniques used for estimation of input force and computation of frequency response function (FRF) from measured response data. In: the 22nd International Congress on Sound and Vibration- ICSV22. Florence, Italy, 12–16, July, 2015

[60]

Chopra A K. Dynamics of structures. 3rd ed. Prentice-Hall, Upper Saddle River (NJ)2007

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (4077KB)

3375

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/