Chemical mapping of cement pastes by using confocal Raman spectroscopy

Fengjuan LIU , Zhihui SUN

Front. Struct. Civ. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 168 -173.

PDF (496KB)
Front. Struct. Civ. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 168 -173. DOI: 10.1007/s11709-015-0323-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Chemical mapping of cement pastes by using confocal Raman spectroscopy

Author information +
History +
PDF (496KB)

Abstract

In the present study, chemical mapping on the hydration process of cement paste with water-to-cement (w/c) ratio of 0.60 was implemented by Raman spectroscopy (RS). The RS was applied to study the paste from 12 hours after mixing to 28 days. Cement ingredients and hydration products, including calcium silicates (C3S and C2S), calcium hydroxide (CH), and ettringite, were quantitatively studied. From the research, it is observed that calcium silicates were consumed gradually with the increased hydration age. Calcium hydroxide increased and tended to cluster in the pore vicinity during hydration. Ettringite was found to form on the surface of the unreacted particles, which was shown as a mixed zone of ettringite and calcium silicates in the maps. It is concluded from the study that chemical mapping was an effective method to assist in visualizing particle dispersion and connection on top of the quantitative analysis.

Keywords

chemical mapping / Raman spectroscopy / calcium silicates / calcium hydroxide / ettringite

Cite this article

Download citation ▾
Fengjuan LIU, Zhihui SUN. Chemical mapping of cement pastes by using confocal Raman spectroscopy. Front. Struct. Civ. Eng., 2016, 10(2): 168-173 DOI:10.1007/s11709-015-0323-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scrivener K L, Fullmann T, Gallucci E, Walenta G, Bermejo E. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cement and Concrete Research, 2004, 34(9): 1641–1547

[2]

Snellings R, Salze A, Scrivener K L. Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements. Cement and Concrete Research, 2014, 64: 89–98

[3]

Kjellsen K O, Lagerblad B. Microstructure of tricalcium silicate and Portland cement system at middle periods of hydration-development of Hadley grains. Cement and Concrete Research, 2007, 37(1): 13–20

[4]

Scrivener K L. Backscattered electron imaging of cementitious microstructures: Understanding and quantification. Cement and Concrete Research, 2004, 26(8): 935–945

[5]

Bensted H. Use of Raman spectroscopy in cement chemistry. Journal of the American Ceramic Society, 1976, 59(3–4): 140–143

[6]

Conjeaud M, Boyer H. Some possibilities of Raman microprobe in cement chemistry. Cement and Concrete Research, 1980, 10(1): 61–70

[7]

Bonen D, Johnson T J, Sarkar S L. Characterization of principal clinker materials by FT-Raman microspectroscopy. Cement and Concrete Research, 1994, 24(5): 959–965

[8]

Gastaldi D, Boccaleri E, Canonico F, Bianchi M. The use of Raman spectroscopy as a versatile characterization tool for calciumsulphoaluminate cements: A compositional and hydration study. Journal of Materials Science, 2007, 42(20): 8426–8432

[9]

FrÃas M Ã, MartÃnez-RamÃrez S. Use of micro-Raman spectroscopy to study reaction kinetics in blended white cement pastes containing metakaolin. Journal of Raman Spectroscopy : JRS, 2009, 40(12): 2063–2068

[10]

Potgieter-Vermaak S S, Potgieter J H, Van Grieken R. The application of Raman spectrometry to investigate and characterize cement, Part I: A Review. Cement and Concrete Research, 2006, 36(4): 656–662

[11]

Tarrida M, Madon M, Le Rolland B, Colombet P. An in-situ Raman spectroscopy study of the hydration of Tricalcium silicate. Advanced Cement Based Materials, 1995, 2(1): 15–20

[12]

Black L, Breen C, Yarwood J, Deng C S, Phipps J, Maitland G. Hydration of tricalcium aluminate (C3A) in the presence and absence of gypsum—studied by Raman spectroscopy and X-ray diffraction. Journal of Materials Chemistry, 2006, 16(13): 1263–1272

[13]

Torréns‐Martín D, Fernández-Carrasco L, Martínez-Ramírez S. Hydration of calcium aluminates and calcium sulfoaluminate studied by Raman Spectroscopy. Cement and Concrete Research, 2013, 47: 43–50

[14]

Liu F, Sun Z. Feasibility study of using raman spectroscopy to detect hydration in wet paste. ACI Materials Journal, 2013, 110(6): 611–618

[15]

Liu F, Sun Z, Qi C. Raman spectroscopy study on the hydration behaviors of Portland cement pastes during setting. Journal of Materials in Civil Engineering, 2014, doi:10.1061/(ASCE)MT.1943-5533.0001189

[16]

Liu F, Sun Z, Qi C. Raman spectroscopy of the dehydration process of gypsums. Advances in Cement Research, 2015,doi:10.1680/adcr.14.00086

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (496KB)

2762

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/