Response in piled raft foundation of tall chimneys under along-wind load incorporating flexibility of soil

B. R. JAYALEKSHMI , S.V. JISHA , R. SHIVASHANKAR

Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 307 -322.

PDF (2669KB)
Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 307 -322. DOI: 10.1007/s11709-015-0288-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Response in piled raft foundation of tall chimneys under along-wind load incorporating flexibility of soil

Author information +
History +
PDF (2669KB)

Abstract

The present paper deals with the numerical analysis of tall reinforced concrete chimneys with piled raft foundation subjected to along-wind loads considering the flexibility of soil. The analysis was carried out using finite element method on the basis of direct method of soil-structure interaction (SSI). The linear elastic material behavior was assumed for chimney, piled raft and soil. Four different material properties of soil stratum were selected in order to study the effect of SSI. The chimney elevation and the thickness of raft of piled raft foundation were also varied for the parametric study. The chimneys were assumed to be located in terrain category 2 and subjected to a maximum wind speed of 50 m/s as per IS:875 (Part 3)-1987. The along-wind loads were computed according to IS:4998 (Part 1)-1992. The base moments of chimney evaluated from the SSI analysis were compared with those obtained as per IS:4998 (Part 1)-1992. The tangential and radial bending moments of raft of piled raft foundation were evaluated through SSI analysis and compared with those obtained from conventional analysis as per IS:11089-1984, assuming rigidity at the base of the raft foundation. The settlements of raft of piled raft foundation, deflection of pile and moments of the pile due to interaction with different soil stratum were also evaluated. From the analysis, considerable reduction in the base moment of chimney due to the effect of SSI is observed. Higher radial moments and lower tangential moments were obtained for lower elevation chimneys with piled raft resting on loose sand when compared with conventional analysis results. The effect of SSI in the response of the pile is more significant when the structure-foundation system interacts with loose sand.

Keywords

finite element method / piled raft / tall chimney / soil-structure interaction / along-wind load

Cite this article

Download citation ▾
B. R. JAYALEKSHMI, S.V. JISHA, R. SHIVASHANKAR. Response in piled raft foundation of tall chimneys under along-wind load incorporating flexibility of soil. Front. Struct. Civ. Eng., 2015, 9(3): 307-322 DOI:10.1007/s11709-015-0288-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Poulos H GDavis E H. Pile Foundation Analysis and Design. New York: John Wiley and Sons, 1980

[2]

Fleming W G KWeltman A JRandolph M FElson W K. Piling Engineering. 2nd ed. London: Surrey University Press, 1992

[3]

Randolph M F. Design methods for pile groups and piled rafts. In: Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering. New Delhi, 19945: 61–82

[4]

Heggade V NBagasrawala S T. Soil structure interaction in chimney rafts. The 2nd Int fib Congress. Italy, 2006

[5]

Ta L DSmall J C. An approximation for analysis of raft and piled raft foundations. Computers and Geotechnics199720(2): 105–123

[6]

Mendonça A Vde Paiva J B. A boundary element method for the static analysis of raft foundations on piles. Engineering Analysis with Boundary Elements200024(3): 237–247

[7]

Ai Z YCheng Y C. Analysis of vertically loaded piles in multilayered transversely isotropic soils by BEM. Engineering Analysis with Boundary Elements201337(2): 327–335

[8]

Ai Z YHan J. Boundary element analysis of axially loaded piles embedded in a multi-layered soil. Computers and Geotechnics200936(3): 427–434

[9]

Zhang H HSmall J C. Analysis of capped pile groups subjected to horizontal and vertical loads. Computers and Geotechnics200026(1): 1–21

[10]

Matos Filho RMendonca A VPaiva J B. Static boundary element analysis of piles submitted to horizontal and vertical loads. Engineering Analysis with Boundary Elements200529(3): 195–203

[11]

Lin D GFeng Z Y. A numerical study of piled raft foundations. J Chin Inst Eng200629(6): 1091–1097

[12]

Poulos H G. Methods of analysis of piled raft foundations–A report prepared on behalf of technical committee TC18 on piled raft foundations. International Society of Soil Mechanics and Geotechnical Engineering2001

[13]

Comodromos E MPapadopoulou M CRentzeperis I K. Pile foundation analysis and design using experimental data and 3-D numerical analysis. Computers and Geotechnics200936(5): 819–836

[14]

Lee J HKim YJeong S. Three-dimensional analysis of bearing behavior of piled raft on soft clay. Computers and Geotechnics201037(1–2): 103–114

[15]

Padrón L AAznarez J JMaeso O. 3-D boundary element–finite element method for the dynamic analysis of piled buildings. Engineering Analysis with Boundary Elements201135(3): 465–477

[16]

Kelesoglu M KSpringman S M. Analytical and 3D numerical modeling of full-height bridge abutments constructed on pile foundations through soft soils. Computers and Geotechnics201138(8): 934–948

[17]

Huang MLiang FJiang J. A simplified nonlinear analysis method for piled raft foundation in layered soils under vertical loading. Computers and Geotechnics201138(7): 875–882

[18]

Wang ZXie XWang J. A new nonlinear method for vertical settlement prediction of a single pile and pile groups in layered soils. Computers and Geotechnics201245: 118–126

[19]

Bourgeois Ede Buhan PHassen G. Settlement analysis of piled-raft foundations by means of a multiphase model accounting for soil-pile interactions. Computers and Geotechnics201246: 26–38

[20]

Nguyen D D CJo S BKim D S. Design method of piled-raft foundations under vertical load considering interaction effects. Computers and Geotechnics201347: 16–27

[21]

American Concrete Institute. ACI (307–2008). Code requirements for reinforced concrete chimneys (ACI 307–08) and commentary. USA 

[22]

Koten H V. Wind actions. In: Zurich editor. The CICIND Chimney Book: Industrial chimneys of concrete or steel. CICIND, 2005, 99–114

[23]

Bureau of Indian standards. IS:4998(Part 1)-1992 (Reaffirmed 2003). Criteria for the design of reinforced concrete chimneys. New Delhi 

[24]

Menon DRao P S. Estimation of along wind moments in RC chimneys. Engineering Structures199719(1): 71–78

[25]

Jayalekshmi B RMenon DPrasad A M. Effect of soil-structure interaction on along-wind response of tall chimneys. In: Proceedings of the 13th International Conference of IACMAG. Australia, 20112: 846–51

[26]

Mehta DGandhi N J. Time study response of tall chimneys, under the effect of soil structure interaction and long period earthquake impulse. In: Proceedings of the 14th World Confer on Earthquake Engineering. China, 2008

[27]

Wolf J P. Dynamic soil-structure interaction. USA: Prentice-Hall, 1985

[28]

Burman ANayak PAgrawal PMaity D. Coupled gravity dam–foundation analysis using a simplified direct method of soil–structure interaction. Soil Dynamics and Earthquake Engineering201234(1): 62–68

[29]

Tabatabaiefar H RMassumi A. A simplified method to determine seismic responses of reinforced concrete moment resisting building frames under influence of soil-structure interaction. Soil Dynamics and Earthquake Engineering201030(11): 1259–1267

[30]

Wolf J PSong C. Some cornerstones of dynamic soil-structure interaction. Engineering Structures200224(1): 13–28

[31]

Bureau of Indian standards. IS:11089–1984 (Reaffirmed 2002). Code of practice for design and construction of ring foundation. New Delhi

[32]

Turner T. Industrial chimney foundations. In: Zurich editor, The CICIND chimney book: Industrial chimneys of concrete or steel. CICIND, 2005, 79–98

[33]

Bowles J E. Foundation analysis and design. Singapore: McGraw-Hill International Editions, 1997

[34]

NEHRP:1994. Recommended provisions for seismic regulations of new buildings. Part 1. Provisions, FEMA 222A 

[35]

Bureau of Indian standards. IS:875 (Part 3)-1987 (Reaffirmed 2003). Code of practice for design loads (other than earthquake) for building and structures. New Delhi

[36]

Bureau of Indian standards. IS:1904–1986 (Reaffirmed 2006). Code of practice for design and construction of foundations in soils: General requirements. New Delhi

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2669KB)

3716

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/