Aseismic smart building isolation systems under multi-level earthquake excitations: Part II, energy-dissipation and damage reduction

Min-Ho CHEY , J. Geoffrey CHASE , John B. MANDER , Athol J. CARR

Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 297 -306.

PDF (1172KB)
Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 297 -306. DOI: 10.1007/s11709-015-0308-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Aseismic smart building isolation systems under multi-level earthquake excitations: Part II, energy-dissipation and damage reduction

Author information +
History +
PDF (1172KB)

Abstract

Based on the performance results of the previously suggested smart building isolation systems (1st companion paper), this following study verifies the control effects of the systems from the view point of energy dissipation and damage level metrics. Several different model cases of the strategically isolated multi-story building structures utilizing passive dampers and semi-active resettable devices are analyzed and the energy-based target indices are compared. Performance comparisons are conducted on statistically calculated story/structural hysteretic energy and story/structural damage demands over realistic suites of earthquake ground motion records, representing seismic excitations of specific return period probability. Again, the semi-active solutions show significant promise for applications of resettable device, offering advantages over passive systems in the consistent damage reductions. The specific results of this study include the identification of differences in the mechanisms by which smart building isolation systems remove energy, based on the differences in the devices used. Less variability is also seen for the semi-active isolation systems, indicating an increased robustness.

Keywords

smart building isolation / story and structural / energy-dissipation / damage assessment

Cite this article

Download citation ▾
Min-Ho CHEY, J. Geoffrey CHASE, John B. MANDER, Athol J. CARR. Aseismic smart building isolation systems under multi-level earthquake excitations: Part II, energy-dissipation and damage reduction. Front. Struct. Civ. Eng., 2015, 9(3): 297-306 DOI:10.1007/s11709-015-0308-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McCabe S LHall W J. Damage and reserve capacity evaluation of structures subjected to strong earthquake ground motion. In: Proceedings of the 10th World Conference on Earthquake Engineering. Madrid, Spain, 1992, 3653–3658

[2]

Akiyama H. Earthquake Resistant Limit-State Design for Buildings. University of Tokyo Press1985

[3]

Leelataviwat SGoel S CStojadinovic B. Toward performance-based seismic design of structures. Earthquake Spectra199915(3): 435–461

[4]

Zahrah THall J. Earthquake energy absorption in SDOF structures. Journal of Structural Engineering1984110(8): 1757–1772

[5]

Fajfar PFischinger M. A seismic procedure including energy concept. In: Proceedings of IX ECEE. Moscow1990, 312–321

[6]

Uang C MBertero V V. Evaluation of seismic energy in structures. Earthquake Engineering & Structural Dynamics199019(1): 77–90

[7]

Chey M HChase J GMander J BCarr A J. Semi-active tuned mass damper building systems: Design. Earthquake Engineering & Structural Dynamics201039(2): 119–139

[8]

Chey M HChase J GMander J BCarr A J. Semi-active tuned mass damper building systems: Application. Earthquake Engineering & Structural Dynamics201039(1): 69–89

[9]

Chey M HChase J GMander J BCarr A J. Innovative seismic retrofitting strategy of added stories isolation system. Frontiers of Structural and Civil Engineering20137(1): 13–23

[10]

Frankel AMueller CPerkins DBarnhard TLeyendecker ESafak EHanson SDickman NHopper M. New USGS seismic hazard maps for the United States,” Proceedings of the Conference on Natural Disaster Reduction, Washington, DC, USA, 1996, 173–174

[11]

Otani S. Hysteresis models of reinforced concrete for earthquake response analysis. Journal of the Faculty of Engineering, University of Tokyo198134(3): 407–441

[12]

Carr A J. “RUAUMOKO” Computer Program Library. Department of Civil Engineering, University of Canterbury2007

[13]

Carr A JTabuchi M. The Structural Ductility and the Damage Index for Reinforced Concrete Structure under Seismic Excitation. In: Proceedings of the Second European Conference on Structural Dynamics: EURODYN'9319931: 169–176

[14]

Park Y JAng A H S. Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering1985111(4): 722–739

[15]

Park Y JAng A H SWen Y K. Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering1985111(4): 740–757

[16]

Charng P H. Base isolation for multistorey building structures. Dissertation for the Doctoral Degree. Christchurch: University of Canterbury, 1998

[17]

Mørk K J. Stochastic analysis of reinforced concrete frames under seismic excitation. Soil Dynamics and Earthquake Engineering199211(3): 145–161

[18]

Nielsen S R KKoyluoglu H UCalmak A S. One and two-dimensional maximum softening damage indicators for reinforced concrete structures under seismic excitation. Soil Dynamics and Earthquake Engineering199211(8): 435–443

[19]

DiPasquale ECakmak A S. Seismic damage assessment using linear models. Soil Dynamics and Earthquake Engineering19909(4): 194–215

[20]

Stefanou GFragiadakis M. Nonlinear dynamic analysis of frames with stochastic non-Gaussian material properties. Engineering Structures200931(8): 1841–1850

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1172KB)

2429

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/