Aseismic smart building isolation systems under multi-level earthquake excitations: Part I, conceptual design and nonlinear analysis

Min-Ho CHEY , J. Geoffrey CHASE , John B. MANDER , Athol J. CARR

Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 286 -296.

PDF (901KB)
Front. Struct. Civ. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 286 -296. DOI: 10.1007/s11709-015-0307-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Aseismic smart building isolation systems under multi-level earthquake excitations: Part I, conceptual design and nonlinear analysis

Author information +
History +
PDF (901KB)

Abstract

As a novel structural control strategy, tuned mass damper (TMD) inspired passive and semi-active smart building isolation systems are suggested to reduce structural response and thus mitigate structural damage due to earthquake excitations. The isolated structure’s upper stories can be utilized as a large scaled TMD, and the isolation layer, as a core design point, between the separated upper and lower stories entails the insertion of rubber bearings and (i) viscous dampers (passive) or (ii) resettable devices (semi-active). The seismic performance of the suggested isolation systems are investigated for 12-story reinforced concrete moment resisting frames modeled as “10+ 2” stories and “8+ 4” stories. Passive viscous damper or semi-active resettable devices are parametrically evaluated through the optimal design principle of a large mass ratio TMD. Statistical performance metrics are presented for 30 earthquake records from the three suites of the SAC project. Based on nonlinear structural models, including P-delta effects and modified Takeda hysteresis, the inelastic time history analyses are conducted to compute the seismic performances across a wide range of seismic hazard intensities. Results show that semi-active smart building isolation systems can effectively manage seismic response for multi-degree-of freedom (MDOF) systems across a broader range of ground motions in comparison to uncontrolled case and passive solution.

Keywords

tuned mass damper / smart building isolation / resettable device / non-linear / statistical assessment

Cite this article

Download citation ▾
Min-Ho CHEY, J. Geoffrey CHASE, John B. MANDER, Athol J. CARR. Aseismic smart building isolation systems under multi-level earthquake excitations: Part I, conceptual design and nonlinear analysis. Front. Struct. Civ. Eng., 2015, 9(3): 286-296 DOI:10.1007/s11709-015-0307-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jagadish K SPrasad B K RRao P V. Inelastic vibration absorber subjected to earthquake ground motions. Earthquake Engineering & Structural Dynamics19797(4): 317–326

[2]

Miyama T. Seismic response of multi-story frames equipped with energy absorbing story on its top. In: Proceedings of the10th World Conference of Earthquake Engineering. Madrid, Spain, 1992VII: 4201–4206

[3]

Villaverde R. Aseismic roof isolation system: Feasibility study with 13-story building. Journal of Structural Engineering2002128(2): 188–196

[4]

Charng P H. Base isolation for multistorey building structures. Dissertation for the Doctoral Degree. Christchurch: University of Canterbury, 1998

[5]

Pan T CLing S FCui W. Seismic response of segmental buildings. Earthquake Engineering & Structural Dynamics199524(7): 1039–1048

[6]

Pan T CCui W. Response of segmental buildings to random seismic motions. ISET Journal of Engineering Technology199835(4): 105–112

[7]

Murakami KKitamura HOzaki HTeramoto T. Design and analysis of a building with the middle-story isolation structural system. In: Proceedings of the 12th World Conference of Earthquake Engineering. Auckland, New Zealand, Paper No. 08572000

[8]

Sueoka TTorii STsuneki Y. The Application of Response Control Design Using Middle-Story Isolation System to High-Rise Building. In: Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, Canada, Paper No. 34572004

[9]

Kawamura SSugisaki ROgura KMaezawa STanaka SYajima A. Seismic isolation retrofit in Japan. In: Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, Paper No. 25232000

[10]

Zhou F LYang ZLiu W GTan P. New seismic isolation system for irregular structure with the largest isolation building area in the world. In: Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, Canada, Paper No. 23492004

[11]

De Angelis MPerno SReggio A. Dynamic response and optimal design of structures with large mass ratio TMD. Earthquake Engineering & Structural Dynamics201241(1): 41–60

[12]

Anh N DNguyen N X. Extension of equivalent linearization method to design of TMD for linear damped systems. Structural Control and Health Monitoring201219(6): 565–573

[13]

Miranda J C. A method for tuning tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics201242(7): 1003–1010

[14]

Moutinho C. An alternative methodology for designing tuned mass dampers to reduce seismic vibrations in building structures. Earthquake Engineering & Structural Dynamics201241(14): 2059–2073

[15]

Wang ZChen ZWang J. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism. Earthquake Engineering and Engineering Vibration201211(3): 391–401

[16]

Chey M HChase J GMander J BCarr A J. Semi-active tuned mass damper building systems: Design. Earthquake Engineering & Structural Dynamics201039(2): 119–139

[17]

Chey M HChase J GMander J BCarr A J. Semi-active tuned mass damper building systems: Application. Earthquake Engineering & Structural Dynamics201039(1): 69–89

[18]

Chey M HChase J GMander J BCarr A J. Innovative seismic retrofitting strategy of added stories isolation system. Frontiers of Structural and Civil Engineering20137(1): 13–23

[19]

Jury R D. Seismic load demands on columns of reinforced concrete multistorey frames. ME Thesis, Christchurch: University of Canterbury1978

[20]

NZS4203. New Zealand Standard. Code of Practice for General Structural Design and Design Loadings for Buildings. Standards Association of New Zealand (SANZ)1976

[21]

Paulay T. Moment redistribution in continuous beams of eqrthquake resistant multistorey reinforced concrete frames. Bulletin of the New Zealand National Society of Earthquake Engineering19769(4): 205–212

[22]

Thomson E D. P-delta effects in ductile reinforced concrete frames under seismic loading. Christchurch: University of Canterbury, 1991

[23]

NZS4203. New Zealand Standard. Code of Practice for General Structural Design and Design Loadings for Buildings.Standards Association of New Zealand (SANZ)1992

[24]

Carr A J. RUAUMOKO” Computer Program Library. Christchurch: University of Canterbury, 2007

[25]

Chase J GMulligan K JGue AAlnot TRodgers GMander J BElliott RDeam BCleeve LHeaton D. Re-shaping hysteretic behaviour using semi-active resettable device dampers. Engineering Structures200628(10): 1418–1429

[26]

Mulligan KChase JGue AMander JAlnot TDeam BRodgers GCleeve LHeaton D. Resetable devices with customised performance for semi-active seismic hazard mitigation of structures. In: Proceedings of NZ Society for Earthquake Engineering Conference. 11−13 March, 2005, Wairakei, New Zealand2005

[27]

Mulligan KChase JMander JElliot R. Semi-active resetable actuators incorporating a high pressure air source. In: Proceedings of NZ Society for Earthquake Engineering Conference. 30 March 1 April, Palmerston North, New Zealand2007

[28]

Barroso L R. Performance evaluation of vibration controlled steel structures under seismic loading. Dissertation for the Doctoral Degree. Stanford: Stanford University, 1999

[29]

Breneman S E. Design of active control systems for multi-level seismic resistance. Dissertation for the Doctoral Degree. Stanford: Stanford University, 2000

[30]

Otani S. AKE, A Computer Program for Inelastic Response of R/C Frames to Earthquakes. Report UILU-Egn-74−2029, Civil Engineering Studies, University of Illinois at Urbana Champaign1974

[31]

Emori KSchnobrich W C. Analysis of Reinforced Concrete Frame-Wall Structures for Strong Motion Earthquakes. Structural Research Series, No. 434, University of Illinois at Urbana Champaign1978

[32]

Kanaan A EPowell G H. General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures. Report No. EERC 73−6, University of California at Berkeley1973

[33]

Sommerville PSmith NPunyamurthula SSun J. Development of ground motion time histories for Phase II of the FEMA/SAC steel project. SAC Back-ground Document Report No. SAC/BD-97/041997

[34]

Hunt S J. Semi-active smart-dampers and resetable actuators for multi-level seismic hazard mitigation of steel moment resisting frames. ME Thesis, Christchurch: University of Canterbury, 2002

[35]

Limpert EStahel W AAbbt M. Log-normal distributions across the sciences: Keys and clues. Bioscience200151(5): 341–352

[36]

Kennedy R PCornell C ACampbell R DKaplan SPerla H F. Probabilistic seismic safety study of an existing nuclear-power plant. Nuclear Engineering and Design198059(2): 315–338

[37]

Gupta AKrawinkler H. Estimation of seismic drift demands for frame structures. Earthquake Engineering & Structural Dynamics200029(9): 1287–1305

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (901KB)

3511

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/