Finite element modeling of environmental effects on rigid pavement deformation

Sunghwan KIM , Halil CEYLAN , Kasthurirangan GOPALAKRISHNAN

Front. Struct. Civ. Eng. ›› 2014, Vol. 8 ›› Issue (2) : 101 -114.

PDF (931KB)
Front. Struct. Civ. Eng. ›› 2014, Vol. 8 ›› Issue (2) : 101 -114. DOI: 10.1007/s11709-014-0254-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite element modeling of environmental effects on rigid pavement deformation

Author information +
History +
PDF (931KB)

Abstract

In this study, finite element (FE)-based primary pavement response models are employed for investigating the early-age deformation characteristics of jointed plain concrete pavements (JPCP) under environmental effects. The FE-based ISLAB (two-and-one-half-dimensional) and EverFE (three-dimensional) software were used to conduct the response analysis. Sensitivity analyses of input parameters used in ISLAB and EverFE were conducted based on field and laboratory test data collected from instrumented pavements on highway US-34 near Burlington, Iowa. Based on the combination of input parameters and equivalent temperatures established from preliminary studies, FE analyses were performed and compared with the field measurements. Comparisons between field measured and computed deformations showed that both FE programs could produce reasonably accurate estimates of actual slab deformations due to environmental effects using the equivalent temperature difference concept.

Graphical abstract

Keywords

jointed plain concrete pavements (JPCP) / curling and warping / sensitivity analyses / rigid pavement analysis and design / finite element analysis (FEA)

Cite this article

Download citation ▾
Sunghwan KIM, Halil CEYLAN, Kasthurirangan GOPALAKRISHNAN. Finite element modeling of environmental effects on rigid pavement deformation. Front. Struct. Civ. Eng., 2014, 8(2): 101-114 DOI:10.1007/s11709-014-0254-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rao C, Barenberg E J, Snyder M B, Schmidt S. Effects of temperature and moisture on the response of jointed concrete pavements. In: Proceedings of 7th International Conference on Concrete Pavements. Orlando, Florida, 2001

[2]

Siddique Z, Hossain M. Finite element analysis of PCCP curling and roughness. In: Proceedings of 8th International Conference on Concrete Pavements. Colorado Springs, Colorado, 2005

[3]

Ceylan H, Kim S, Gopalakrishnan K, Wang K. Environmental effects on deformation and smoothness behavior of early-age jointed plain concrete pavements. Journal of the Transportation Research Board, 2007, 2037(–1): 30–39

[4]

Ceylan H, Kim S, Turner D J, Rasmussen R O, Chang G K, Grove J, Gopalakrishnan K. Impact of Curling, Warping, and Other Early-Age Behavior on Concrete Pavement Smoothness: Early, Fre quent, and Detailed (EFD) Study. Phase II Final Report. Report No. FHWA DTFH61–01-X-00042 (Project 16). Center for Transportation Research and Education (CTRE), Iowa State University, Ames, IA, 2007

[5]

Chang G, Rasmussen R, Merritt D, Garber S, Karamihas S. Impact of Temperature Curling and Moisture Warping on Jointed Concrete Pavement Performance. FHWA TechBrief. Report No. FHWA-HIF-10–010. Federal Highway Administration (FHWA), Washington, D C, 2010

[6]

Kim S, Gopalakrishnan K, Ceylan H. A simplified approach for predicting early-age concrete pavement deformation. Journal of Civil Engineering and Management, 2011, 17(1): 27–35

[7]

Bianchini A. Evaluation of temperature-induced curling in concrete slabs using deflection difference analysis. Journal of Transportation Engineering, 2013, 139(2): 130–137

[8]

Kim S, Ceylan H, Gopalakrishnan K. Smoothness variations of early-age jointed plain concrete pavements. Canadian Journal of Civil Engineering, 2008, 35(12): 1388–1398

[9]

Lim S W, Tayabji S D. Analytical technique to mitigate early-age longitudinal cracking in jointed concrete pavements. In: Proceedings of 8th International Conference on Concrete Pavements. Colorado Springs, Colorado, 2005

[10]

Chung Y, Shin H C, Kodide U, Rupnow T. Stress of Sustainable PCC Pavements Under Nonlinear Temperature and Moisture Profiles. TRB 90th Annual Meeting Compendium of Papers DVD, Transportation Research Board (TRB), Washington, D C, 2011

[11]

Armaghani J M, Lybas J M, Tia M, Ruth B E. Concrete pavement joint stiffness evaluation. Transportation Research Record 1099, Transportation Research Board– National Research Council, Washington, D C, 1986, 22–36

[12]

Ioannides A M, Salsili-Murua R A, Temperature curling in rigid pavements: an application of dimensional analysis. Transportation Research Record 1227, Transportation Research Board–National Research Council, Washington, D C, 1989, 1–10

[13]

Ioannides A M, Korovesis G T. Aggregate interlock: A pure-shear load transfer mechanism. Transportation Research Record 1286, Transportation Research Board- National Research Council, Washington, DC, 1990, 14–24

[14]

Ioannides A M, Korovesis G T. Analysis and design of doweled slab-on-grade pavement systems. Journal of Transportation Engineering, 1992, 118(6): 745–768

[15]

Chatti K, Lysmer J, Monismith C L. Dynamic finite element analysis of jointed concrete pavement. Transportation Research Record 1449, Transportation Research Board– National Research Council, Washington, D C, 1994, 79–90

[16]

Hammons M I, Ioannides A M. Advanced pavement design: Finite element modeling for rigid pavement joints-report I: Background investigation, Technical Report DOT- FAA- AR-95–85, Federal Aviation Administration, U.S. Department of Transportation, Washington, D C, 1997

[17]

Vepa T S, George K P. Deflection response model for cracked rigid pavements. Journal of Transportation Engineering, 1997, 123(5): 377–384

[18]

Davids W G. 3D finite element study on load transfer at doweled joints in flat and curled rigid pavements. International Journal of Geomechanics, 2001, 1(3): 309–323

[19]

Beckemeyer C A, Khazanovich L, Yu H T, Determining amount of built-in curling in jointed plain concrete pavement: case study of Pennsylvania I-80. Transportation Research Record 1809, Transportation Research Board-National Research Council, Washington, D C, 2002, 85–92

[20]

Rao S, Roesler J R. Characterizing effective built in curling from concrete pavement field measurements. Journal of Transportation Engineering, 2005, 131(4): 320–327

[21]

Wang Q, Chen Y. Improvements to Modeling of Concrete Slab Curling by Using NIKE3D Finite Element Program. Transportation Research Record 2226, Transportation Research Board-National Research Council, Washington, D C, 2011, 71–81

[22]

Wang W, Basheer I, Petros K. Jointed plain concrete pavement models evaluation. CD-ROM, Presented at 85th Annual Transportation Research Board Meeting, Transportation Research Board, Washington, D C, 2006

[23]

Khazanovich L, Yu H T, Rao S, Galasova K, Shats E, Jones R. ISLAB 2000-finite element analysis program for rigid and composite pavements: user’s guide, ERES Consultant, Urbana Champaign, Illinois, 2000

[24]

Davids W G, Ever F E. software for the 3D finite element analysis of jointed plain concrete pavements.

[25]

National Cooperative Highway Research Program (NCHRP). Guide for mechanistic-empirical design of new and rehabilitated pavement structures, National Cooperative Highway Research Program 1–37 A, Transportation Research Board, Washington D C, 2004

[26]

Davids W G. EverFE theory manual, University of Maine, Civil Engineering Department, 2003, 1–18

[27]

Yu H T, Khazanovich L, Darter M I, Ardani A, Analysis of concrete pavement response to temperature and wheel loads measured from instrumented slab. Transportation Research Record 1639, Transportation Research Board-National Research Council, Washington, D C, 1998, 94–101

[28]

Yu H T, Khazanovich L, Darter M I. 2004, Consideration of JPCP curling and warping in the 2002 design guide. CD-ROM, Presented at 83rd Annual Transportation Research Board Meeting, Transportation Research Board, Washington, D C, 2004

[29]

Westergaard H M. Analysis of stresses in concrete pavements due to variations of temperature. Proceedings of Highway Research Board 6, National Research Council, Washington, D C, 1927, 201–215

[30]

Korovesis G T. Analysis of slab on grade pavement systems subjected to wheel and temperature loadings. Dissertation for the Doctoral Degree. Champaign: University of Illinois at Urbana Champaign, 1990

[31]

Davids W G, Turkiyyah G M, Mahoney J P. EverFE: Rigid pavement three–dimensional finite element analysis tool. Transportation Research Record 1629, Transportation Research Board-National Research Council, Washington, D.C., 1998, 41–49

[32]

Davids W G, Turkiyyah G M. Multigrid preconditioner for unstructured nonlinear 3D FE models. Journal of Engineering Mechanics, 1999, 125(2): 186–196

[33]

Davids W G, Wang Z, Turkiyyah G M, Mahoney J P, Bush D. Three-dimensional finite element analysis of jointed plan concrete pavement with EverFe 2.2. Transportation Research Record 1853, Transportation Research Board–National Research Council, Washington, D C, 2003, 92–99

[34]

Sixbey D, Swanlund M, Gagarin N, Mekemson J R. Measurement and analysis of slab curvature in JPC pavements using profiling technology. In: Proceedings of 7th International Conference on Concrete Pavements. Orlando, Florida, 2001

[35]

Vandenbossche J M. Interpreting falling weight deflectometer results for curled and warped portland cement concrete pavements. Dissertation for the Doctoral Degree, Minnesota: University of Minnesota, 2003

[36]

Kim S. Early age behavior of jointed plain concrete pavements subjected to environmental loads. Dissertation for the Doctoral Degree, Ames, Iowa: Iowa State University, 2006

[37]

Yu H T, Khazanovich L. Effect of construction curling on concrete pavement behavior. Proceedings of 7th International Conference on Concrete Pavements, Orlando, Florida, 2001

[38]

Jeong J H, Zollinger D G. Insights on early age curling and warping behavior from fully instrumented test slab system. CD-ROM, Presented at 83rd Annual Transportation Research Board Meeting, Transportation Research Board, Washington D C, 2004

[39]

Vandenbossche J M, Snyder M B. Comparison between measured slab profiles of curled pavements and profile generated using the finite element method. In: Proceedings of 8th International Conference on Concrete Pavements. Colorado Springs, Colorado, 2005

[40]

Ott L R, Longnecker M. An Iintroduction to Statistical Methods and Data Analysis, 5th ed. Duxbury, Pacific Grove, CA, 2001

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (931KB)

3637

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/