Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON

Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 257-269.

PDF(1836 KB)
PDF(1836 KB)
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 257-269. DOI: 10.1007/s11709-017-0410-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

Author information +
History +

Abstract

In this paper, a hierarchical approach is proposed for the evaluation of fatigue cracking in asphalt concrete pavements considering three different levels of complexities in the representation of the material behaviour, design parameters characterization and the determination of the pavement response as well as damage computation. Based on the developed hierarchical approach, three damage computation levels are identified and proposed. The levels of fatigue damage analysis provides pavement engineers a variety of tools that can be used for pavement analysis depending on the availability of data, required level of prediction accuracy and computational power at their disposal. The hierarchical approach also provides a systematic approach for the understanding of the fundamental mechanisms of pavement deterioration, the elimination of the empiricism associated with pavement design today and the transition towards the use of sound principles of mechanics in pavement analysis and design.

Keywords

fatigue cracking / energy based / crack initiation / mechanistic approach / pavement analysis

Cite this article

Download citation ▾
Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON. Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements. Front. Struct. Civ. Eng., 2017, 11(3): 257‒269 https://doi.org/10.1007/s11709-017-0410-1

References

[1]
Jablonski B, Regehr  J, Rempel G . Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. Final Report Part Design Analysis, 2004
[2]
Roque R, Zhang  Z, Sankar B . Determination of crack growth rate parameter of asphalt mixtures using the superpave IDT. Journal of the Association of Asphalt Paving Technologists, 1999, 68: 404–433
[3]
Schapery R A. A theory of mechanical behavior of elastic media with growing damage and other changes in structure. Journal of the Mechanics and Physics of Solids, 1990, 38(2): 215–253
CrossRef Google scholar
[4]
Kim Y R, Daniel  J S, Wen H . Fatigue Performance Evaluation of Westrack Asphalt Mixtures Using Viscoelastic Continuum Damage Approach. Report to North Carolina Department of Transportation, Report No. FHWA/NC/2002-004, 2002
[5]
Lee H J, Daniel  J S, Kim  Y R. Continuum damage mechanics-based fatigue model of asphalt concrete. Journal of Materials in Civil Engineering, 2000, 12(2): 105–112
CrossRef Google scholar
[6]
Lee H J, Kim  Y R. Viscoelastic continuum damage model of asphalt concrete with healing. Journal of Engineering Mechanics, 1998, 124(11): 1224–1232
CrossRef Google scholar
[7]
Sullivan R W. Development of a viscoelastic continuum damage model for cyclic loading. Mechanics of Time-Dependent Materials, 2008, 12(4): 329–342
CrossRef Google scholar
[8]
Darabi M K, Abu Al-Rub  R K A, Little  D N. A continuum damage mechanics framework for modeling micro-damage healing. International Journal of Solids and Structures, 2012, 49(3‒4): 492–513
CrossRef Google scholar
[9]
Darabi M K, Abu Al-Rub R K A ,  Masad E A ,  Huang C W ,  Little D N . A thermo-viscoelastic–viscoplastic–viscodamage constitutive model for asphaltic materials. International Journal of Solids and Structures, 2011, 48(1): 191–207
CrossRef Google scholar
[10]
Kim Y R, Little  D N. One-dimensional constitutive modeling of asphalt concrete. Journal of Engineering Mechanics, 1990, 116(4): 751–772
CrossRef Google scholar
[11]
Onifade I, Birgisson  B, Balieu R . Energy-based damage and fracture framework for viscoelastic asphalt concrete. Engineering Fracture Mechanics, 2015, 145: 67–85
CrossRef Google scholar
[12]
Dinegdae Y H, Onifade  I, Jelagin D ,  Birgisson B . Mechanics-based top-down fatigue cracking initiation prediction framework for asphalt pavements. Road Materials and Pavement Design, 2015, 16(4): 907–927 
CrossRef Google scholar
[13]
Kim Y R, Little  D N, Lytton  R L. Fatigue and healing characterization of asphalt mixtures. Journal of Materials in Civil Engineering, 2003, 15(1): 75–83
CrossRef Google scholar
[14]
Lytton R L, Chen  C W, Little  D N. Microdamage Healing in Asphalt and Asphalt Concrete, Volume III: A Micromechanics Fracture and Healing Model for Asphalt Concrete. Mathematical Models, Report/paper numbers: FHWA-RD-98-143, Research Report 7229, 2001,78p
[15]
Onifade I, Jelagin  D, Birgisson B ,  Kringos N . Towards asphalt mixture morphology evaluation with the virtual specimen approach. Road Materials and Pavement Design, 2016, 17(3): 1–21
[16]
Das P K, Birgisson  B, Jelagin D ,  Kringos N . Investigation of the asphalt mixture morphology influence on its ageing susceptibility. Materials and Structures, 2013, 48(4): 1–14
[17]
Lira B, Jelagin  D, Birgisson B . Gradation-based framework for asphalt mixture. Materials and Structures, 2013, 46(8): 1401– 1414
CrossRef Google scholar
[18]
Viljoen A. Estimating Asphalt Temperatures from Air Temperatures and Basic Sky Parameters. Internal report Report CR-2001/78: CSIR Transportek, 2001
[19]
Yideti T F, Birgisson  B, Jelagin D ,  Guarin A . Packing theory-based framework for evaluating resilient modulus of unbound granular materials. International Journal of Pavement Engineering, 2014, 15(8): 689–697
CrossRef Google scholar
[20]
Roque R, Birgisson  B, Sangpetngam B ,  Zhang Z . Hot mix asphalt fracture mechanics: a fundamental crack growth law for asphalt mixtures. Asphalt Paving Technology. Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 2002, 71: 816–827
[21]
Zhang Z, Roque  R, Birgisson B ,  Sangpetngam B . Identification and verification of a suitable crack growth law. Journal of the Association of Asphalt Paving Technologists, 2001, 70(44): 1108–1114
[22]
Florida Department of Transportation (FDOT). Roadway designs/pavement managements, 2013. Retrieved from www.dot.state.fl.us
[23]
Voyiadjis G Z ,  Taqieddin Z N ,  Kattan P I . Theoretical formulation of a coupled elastic—plastic anisotropic damage model for concrete using the strain energy equivalence concept. International Journal of Damage Mechanics, 2009, 18(7): 603–638
CrossRef Google scholar
[24]
Carol I, Rizzi  E, Willam K . On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate. International Journal of Solids and Structures, 2001, 38(4): 491–518
CrossRef Google scholar
[25]
AbuAl-Rub R K A ,  Voyiadjis G Z . On the coupling of anisotropic damage and plasticity models for ductile materials. International Journal of Solids and Structures, 2003, 40(11): 2611–2643
CrossRef Google scholar
[26]
Simo J C, Ju  J W. Strain- and stress-based continuum damage models—II. Computational aspects. International Journal of Solids and Structures, 1987, 23(7): 841–869
CrossRef Google scholar
[27]
Simo J C, Ju  J W. Strain- and stress-based continuum damage models—I. Formulation. International Journal of Solids and Structures, 1987, 23(7): 821–840
CrossRef Google scholar
[28]
Little D N, Bhasin  A. Exploring Mechanism of Healing in Asphalt Mixtures and Quantifying its Impact. Springer Series in Materials Science, 2007, 100: 205–218
[29]
Daniel J S, Kim  Y R. Laboratory evaluation of fatigue damage and healing of asphalt mixtures. Journal of Materials in Civil Engineering, 2001, 13(6): 434–440
CrossRef Google scholar

Acknowledgements

The authors will like to acknowledge the support of the Swedish Transport Administration (Trafikverket) for funding this research.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1836 KB)

Accesses

Citations

Detail

Sections
Recommended

/