
Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements
Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON
Front. Struct. Civ. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 257-269.
Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements
In this paper, a hierarchical approach is proposed for the evaluation of fatigue cracking in asphalt concrete pavements considering three different levels of complexities in the representation of the material behaviour, design parameters characterization and the determination of the pavement response as well as damage computation. Based on the developed hierarchical approach, three damage computation levels are identified and proposed. The levels of fatigue damage analysis provides pavement engineers a variety of tools that can be used for pavement analysis depending on the availability of data, required level of prediction accuracy and computational power at their disposal. The hierarchical approach also provides a systematic approach for the understanding of the fundamental mechanisms of pavement deterioration, the elimination of the empiricism associated with pavement design today and the transition towards the use of sound principles of mechanics in pavement analysis and design.
fatigue cracking / energy based / crack initiation / mechanistic approach / pavement analysis
[1] |
Jablonski B, Regehr J, Rempel G . Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. Final Report Part Design Analysis, 2004
|
[2] |
Roque R, Zhang Z, Sankar B . Determination of crack growth rate parameter of asphalt mixtures using the superpave IDT. Journal of the Association of Asphalt Paving Technologists, 1999, 68: 404–433
|
[3] |
Schapery R A. A theory of mechanical behavior of elastic media with growing damage and other changes in structure. Journal of the Mechanics and Physics of Solids, 1990, 38(2): 215–253
CrossRef
Google scholar
|
[4] |
Kim Y R, Daniel J S, Wen H . Fatigue Performance Evaluation of Westrack Asphalt Mixtures Using Viscoelastic Continuum Damage Approach. Report to North Carolina Department of Transportation, Report No. FHWA/NC/2002-004, 2002
|
[5] |
Lee H J, Daniel J S, Kim Y R. Continuum damage mechanics-based fatigue model of asphalt concrete. Journal of Materials in Civil Engineering, 2000, 12(2): 105–112
CrossRef
Google scholar
|
[6] |
Lee H J, Kim Y R. Viscoelastic continuum damage model of asphalt concrete with healing. Journal of Engineering Mechanics, 1998, 124(11): 1224–1232
CrossRef
Google scholar
|
[7] |
Sullivan R W. Development of a viscoelastic continuum damage model for cyclic loading. Mechanics of Time-Dependent Materials, 2008, 12(4): 329–342
CrossRef
Google scholar
|
[8] |
Darabi M K, Abu Al-Rub R K A, Little D N. A continuum damage mechanics framework for modeling micro-damage healing. International Journal of Solids and Structures, 2012, 49(3‒4): 492–513
CrossRef
Google scholar
|
[9] |
Darabi M K, Abu Al-Rub R K A , Masad E A , Huang C W , Little D N . A thermo-viscoelastic–viscoplastic–viscodamage constitutive model for asphaltic materials. International Journal of Solids and Structures, 2011, 48(1): 191–207
CrossRef
Google scholar
|
[10] |
Kim Y R, Little D N. One-dimensional constitutive modeling of asphalt concrete. Journal of Engineering Mechanics, 1990, 116(4): 751–772
CrossRef
Google scholar
|
[11] |
Onifade I, Birgisson B, Balieu R . Energy-based damage and fracture framework for viscoelastic asphalt concrete. Engineering Fracture Mechanics, 2015, 145: 67–85
CrossRef
Google scholar
|
[12] |
Dinegdae Y H, Onifade I, Jelagin D , Birgisson B . Mechanics-based top-down fatigue cracking initiation prediction framework for asphalt pavements. Road Materials and Pavement Design, 2015, 16(4): 907–927
CrossRef
Google scholar
|
[13] |
Kim Y R, Little D N, Lytton R L. Fatigue and healing characterization of asphalt mixtures. Journal of Materials in Civil Engineering, 2003, 15(1): 75–83
CrossRef
Google scholar
|
[14] |
Lytton R L, Chen C W, Little D N. Microdamage Healing in Asphalt and Asphalt Concrete, Volume III: A Micromechanics Fracture and Healing Model for Asphalt Concrete. Mathematical Models, Report/paper numbers: FHWA-RD-98-143, Research Report 7229, 2001,78p
|
[15] |
Onifade I, Jelagin D, Birgisson B , Kringos N . Towards asphalt mixture morphology evaluation with the virtual specimen approach. Road Materials and Pavement Design, 2016, 17(3): 1–21
|
[16] |
Das P K, Birgisson B, Jelagin D , Kringos N . Investigation of the asphalt mixture morphology influence on its ageing susceptibility. Materials and Structures, 2013, 48(4): 1–14
|
[17] |
Lira B, Jelagin D, Birgisson B . Gradation-based framework for asphalt mixture. Materials and Structures, 2013, 46(8): 1401– 1414
CrossRef
Google scholar
|
[18] |
Viljoen A. Estimating Asphalt Temperatures from Air Temperatures and Basic Sky Parameters. Internal report Report CR-2001/78: CSIR Transportek, 2001
|
[19] |
Yideti T F, Birgisson B, Jelagin D , Guarin A . Packing theory-based framework for evaluating resilient modulus of unbound granular materials. International Journal of Pavement Engineering, 2014, 15(8): 689–697
CrossRef
Google scholar
|
[20] |
Roque R, Birgisson B, Sangpetngam B , Zhang Z . Hot mix asphalt fracture mechanics: a fundamental crack growth law for asphalt mixtures. Asphalt Paving Technology. Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 2002, 71: 816–827
|
[21] |
Zhang Z, Roque R, Birgisson B , Sangpetngam B . Identification and verification of a suitable crack growth law. Journal of the Association of Asphalt Paving Technologists, 2001, 70(44): 1108–1114
|
[22] |
Florida Department of Transportation (FDOT). Roadway designs/pavement managements, 2013. Retrieved from www.dot.state.fl.us
|
[23] |
Voyiadjis G Z , Taqieddin Z N , Kattan P I . Theoretical formulation of a coupled elastic—plastic anisotropic damage model for concrete using the strain energy equivalence concept. International Journal of Damage Mechanics, 2009, 18(7): 603–638
CrossRef
Google scholar
|
[24] |
Carol I, Rizzi E, Willam K . On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate. International Journal of Solids and Structures, 2001, 38(4): 491–518
CrossRef
Google scholar
|
[25] |
AbuAl-Rub R K A , Voyiadjis G Z . On the coupling of anisotropic damage and plasticity models for ductile materials. International Journal of Solids and Structures, 2003, 40(11): 2611–2643
CrossRef
Google scholar
|
[26] |
Simo J C, Ju J W. Strain- and stress-based continuum damage models—II. Computational aspects. International Journal of Solids and Structures, 1987, 23(7): 841–869
CrossRef
Google scholar
|
[27] |
Simo J C, Ju J W. Strain- and stress-based continuum damage models—I. Formulation. International Journal of Solids and Structures, 1987, 23(7): 821–840
CrossRef
Google scholar
|
[28] |
Little D N, Bhasin A. Exploring Mechanism of Healing in Asphalt Mixtures and Quantifying its Impact. Springer Series in Materials Science, 2007, 100: 205–218
|
[29] |
Daniel J S, Kim Y R. Laboratory evaluation of fatigue damage and healing of asphalt mixtures. Journal of Materials in Civil Engineering, 2001, 13(6): 434–440
CrossRef
Google scholar
|
/
〈 |
|
〉 |