Experimental measurement of non-Hermitian left eigenvectors

Xulong Wang, Guancong Ma

Front. Phys. ›› 2025, Vol. 20 ›› Issue (5) : 054202.

PDF(7676 KB)
PDF(7676 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (5) : 054202. DOI: 10.15302/frontphys.2025.054202
RESEARCH ARTICLE

Experimental measurement of non-Hermitian left eigenvectors

Author information +
History +

Abstract

The duality of left and right eigenvectors underpins the comprehensive understanding of many physical phenomena. In Hermitian systems, left and right eigenvectors are simply Hermitian-conjugate pairs. In contrast, non-Hermitian eigenstates have left and right eigenvectors that are distinct from each other. However, despite the tremendous interest in non-Hermitian physics in recent years, the roles of non-Hermitian left eigenvectors (LEVs) are still inadequately explored. Their physical consequences and observable effects remain elusive, so much so that LEVs seem largely like objects of primarily mathematical purpose. In this study, we present a method based on the non-Hermitian Green’s function for directly retrieving both LEVs and right eigenvectors (REVs) from experimentally measured steady-state responses. We validate the effectiveness of this approach in two separate acoustic experiments: one characterizes the non-Hermitian Berry phase, and the other measures extended topological modes. Our results not only unambiguously demonstrate observable effects related to non-Hermitian LEVs but also highlight the under-appreciated role of LEVs in non-Hermitian phenomena.

Graphical abstract

Keywords

non-Hermitian systems / Green’s function / left eigenvectors / acoustic measurements / Berry phase / topological states

Cite this article

Download citation ▾
Xulong Wang, Guancong Ma. Experimental measurement of non-Hermitian left eigenvectors. Front. Phys., 2025, 20(5): 054202 https://doi.org/10.15302/frontphys.2025.054202

References

[1]
R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Non-Hermitian physics and PT symmetry, Nat. Phys. 14(1), 11 (2018)
CrossRef ADS Google scholar
[2]
M. A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363(6422), eaar7709 (2019)
CrossRef ADS Google scholar
[3]
Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69, 3 (2020)
CrossRef ADS arXiv Google scholar
[4]
E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)
CrossRef ADS arXiv Google scholar
[5]
K. Ding, C. Fang, and G. Ma, Non-Hermitian topology and exceptional-point geometries, Nat. Rev. Phys. 4(12), 745 (2022)
CrossRef ADS arXiv Google scholar
[6]
C. M. Bender,D. W. Hook, PT-symmetric quantum mechanics, Rev. Mod. Phys. 96(4), 045002 (2024)
[7]
Z. Li, K. Ding, and G. Ma, Eigenvalue knots and their isotopic equivalence in three-state non-Hermitian systems, Phys. Rev. Res. 5(2), 023038 (2023)
CrossRef ADS arXiv Google scholar
[8]
W. D. Heiss, The physics of exceptional points, J. Phys. A Math. Theor. 45(44), 444016 (2012)
CrossRef ADS arXiv Google scholar
[9]
K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6(2), 021007 (2016)
CrossRef ADS arXiv Google scholar
[10]
C. Dembowski, B. Dietz, H. D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, Encircling an exceptional point, Phys. Rev. E 69(5), 056216 (2004)
CrossRef ADS Google scholar
[11]
J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Dynamically encircling an exceptional point for asymmetric mode switching, Nature 537(7618), 76 (2016)
CrossRef ADS arXiv Google scholar
[12]
W. Tang, K. Ding, and G. Ma, Experimental realization of non-Abelian permutations in a three-state non-Hermitian system, Natl. Sci. Rev. 9(11), nwac010 (2022)
CrossRef ADS arXiv Google scholar
[13]
T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, and E. A. Ostrovskaya, Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard, Nature 526(7574), 554 (2015)
CrossRef ADS arXiv Google scholar
[14]
W. Tang, X. Jiang, K. Ding, Y. X. Xiao, Z. Q. Zhang, C. T. Chan, and G. Ma, Exceptional nexus with a hybrid topological invariant, Science 370(6520), 1077 (2020)
CrossRef ADS Google scholar
[15]
N. Okuma and M. Sato, Non-Hermitian topological phenomena: A review, Annu. Rev. Condens. Matter Phys. 14(1), 83 (2023)
CrossRef ADS arXiv Google scholar
[16]
R. Lin, T. Tai, L. Li, and C. H. Lee, Topological Non-Hermitian skin effect, Front. Phys. (Beijing) 18(5), 53605 (2023)
CrossRef ADS arXiv Google scholar
[17]
X. Zhang,T. Zhang,M. H. Lu,Y. F. Chen, A review on non-Hermitian skin effect, Adv. Phys. X 7(1), 2109431 (2022)
[18]
P. Wang, L. Jin, and Z. Song, Non-Hermitian phase transition and eigenstate localization induced by asymmetric coupling, Phys. Rev. A 99(6), 062112 (2019)
CrossRef ADS arXiv Google scholar
[19]
W. Wang, X. Wang, and G. Ma, Anderson transition at complex energies in one-dimensional parity-time-symmetric disordered systems, Phys. Rev. Lett. 134(6), 066301 (2025)
CrossRef ADS arXiv Google scholar
[20]
F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Biorthogonal bulk-boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121(2), 026808 (2018)
CrossRef ADS arXiv Google scholar
[21]
S. Y. Lee, J. W. Ryu, S. W. Kim, and Y. Chung, Geometric phase around multiple exceptional points, Phys. Rev. A 85(6), 064103 (2012)
CrossRef ADS Google scholar
[22]
W. Wang, X. Wang, and G. Ma, Non-Hermitian morphing of topological modes, Nature 608(7921), 50 (2022)
CrossRef ADS arXiv Google scholar
[23]
W. Wang, X. Wang, and G. Ma, Extended state in a localized continuum, Phys. Rev. Lett. 129(26), 264301 (2022)
CrossRef ADS Google scholar
[24]
A. Ghatak, M. Brandenbourger, J. Van Wezel, and C. Coulais, Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial, Proc. Natl. Acad. Sci. USA 117(47), 29561 (2020)
[25]
X. Zhang, Y. Tian, J. H. Jiang, M. H. Lu, and Y. F. Chen, Observation of higher-order non-Hermitian skin effect, Nat. Commun. 12(1), 5377 (2021)
CrossRef ADS arXiv Google scholar
[26]
Z. Li, L. W. Wang, X. Wang, Z. K. Lin, G. Ma, and J. H. Jiang, Observation of dynamic non-Hermitian skin effects, Nat. Commun. 15(1), 6544 (2024)
CrossRef ADS Google scholar
[27]
W. Tang, K. Ding, and G. Ma, Direct measurement of topological properties of an exceptional parabola, Phys. Rev. Lett. 127(3), 034301 (2021)
CrossRef ADS arXiv Google scholar
[28]
H. Schomerus, Nonreciprocal response theory of non-Hermitian mechanical metamaterials, Response phase transition from the skin effect of zero modes, Phys. Rev. Res. 2(1), 013058 (2020)
CrossRef ADS arXiv Google scholar
[29]
X. Wang, W. Wang, and G. Ma, Extended topological mode in a one-dimensional non-Hermitian acoustic crystal, AAPPS Bull. 33(1), 23 (2023)
CrossRef ADS Google scholar
[30]
L. Zhang, Y. Yang, Y. Ge, Y. J. Guan, Q. Chen, Q. Yan, F. Chen, R. Xi, Y. Li, D. Jia, S. Q. Yuan, H. X. Sun, H. Chen, and B. Zhang, Acoustic non-Hermitian skin effect from twisted winding topology, Nat. Commun. 12(1), 6297 (2021)
CrossRef ADS arXiv Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

G. M. thanks Zhao-Qing Zhang and Henning Schomerus for discussions. X. W. thanks Junjie Lu for helpful discussions. This work was supported by the National Key R&D Program (No. 2022YFA1404400), the Hong Kong Research Grants Council (Nos. RFS2223-2S01 and 12301822), and the Hong Kong Baptist University (Nos. RC-RSRG/23-24/SCI/01 and RC-SFCRG/23-24/R2/SCI/12).

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(7676 KB)

Accesses

Citations

Detail

Sections
Recommended

/