
Experimental measurement of non-Hermitian left eigenvectors
Xulong Wang, Guancong Ma
Front. Phys. ›› 2025, Vol. 20 ›› Issue (5) : 054202.
Experimental measurement of non-Hermitian left eigenvectors
The duality of left and right eigenvectors underpins the comprehensive understanding of many physical phenomena. In Hermitian systems, left and right eigenvectors are simply Hermitian-conjugate pairs. In contrast, non-Hermitian eigenstates have left and right eigenvectors that are distinct from each other. However, despite the tremendous interest in non-Hermitian physics in recent years, the roles of non-Hermitian left eigenvectors (LEVs) are still inadequately explored. Their physical consequences and observable effects remain elusive, so much so that LEVs seem largely like objects of primarily mathematical purpose. In this study, we present a method based on the non-Hermitian Green’s function for directly retrieving both LEVs and right eigenvectors (REVs) from experimentally measured steady-state responses. We validate the effectiveness of this approach in two separate acoustic experiments: one characterizes the non-Hermitian Berry phase, and the other measures extended topological modes. Our results not only unambiguously demonstrate observable effects related to non-Hermitian LEVs but also highlight the under-appreciated role of LEVs in non-Hermitian phenomena.
non-Hermitian systems / Green’s function / left eigenvectors / acoustic measurements / Berry phase / topological states
[1] |
R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Non-Hermitian physics and PT symmetry, Nat. Phys. 14(1), 11 (2018)
CrossRef
ADS
Google scholar
|
[2] |
M. A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363(6422), eaar7709 (2019)
CrossRef
ADS
Google scholar
|
[3] |
Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69, 3 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[4] |
E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
K. Ding, C. Fang, and G. Ma, Non-Hermitian topology and exceptional-point geometries, Nat. Rev. Phys. 4(12), 745 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
C. M. Bender,D. W. Hook, PT-symmetric quantum mechanics, Rev. Mod. Phys. 96(4), 045002 (2024)
|
[7] |
Z. Li, K. Ding, and G. Ma, Eigenvalue knots and their isotopic equivalence in three-state non-Hermitian systems, Phys. Rev. Res. 5(2), 023038 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
W. D. Heiss, The physics of exceptional points, J. Phys. A Math. Theor. 45(44), 444016 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6(2), 021007 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
C. Dembowski, B. Dietz, H. D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, Encircling an exceptional point, Phys. Rev. E 69(5), 056216 (2004)
CrossRef
ADS
Google scholar
|
[11] |
J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Dynamically encircling an exceptional point for asymmetric mode switching, Nature 537(7618), 76 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[12] |
W. Tang, K. Ding, and G. Ma, Experimental realization of non-Abelian permutations in a three-state non-Hermitian system, Natl. Sci. Rev. 9(11), nwac010 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[13] |
T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, and E. A. Ostrovskaya, Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard, Nature 526(7574), 554 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
W. Tang, X. Jiang, K. Ding, Y. X. Xiao, Z. Q. Zhang, C. T. Chan, and G. Ma, Exceptional nexus with a hybrid topological invariant, Science 370(6520), 1077 (2020)
CrossRef
ADS
Google scholar
|
[15] |
N. Okuma and M. Sato, Non-Hermitian topological phenomena: A review, Annu. Rev. Condens. Matter Phys. 14(1), 83 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[16] |
R. Lin, T. Tai, L. Li, and C. H. Lee, Topological Non-Hermitian skin effect, Front. Phys. (Beijing) 18(5), 53605 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
X. Zhang,T. Zhang,M. H. Lu,Y. F. Chen, A review on non-Hermitian skin effect, Adv. Phys. X 7(1), 2109431 (2022)
|
[18] |
P. Wang, L. Jin, and Z. Song, Non-Hermitian phase transition and eigenstate localization induced by asymmetric coupling, Phys. Rev. A 99(6), 062112 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
W. Wang, X. Wang, and G. Ma, Anderson transition at complex energies in one-dimensional parity-time-symmetric disordered systems, Phys. Rev. Lett. 134(6), 066301 (2025)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Biorthogonal bulk-boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121(2), 026808 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
S. Y. Lee, J. W. Ryu, S. W. Kim, and Y. Chung, Geometric phase around multiple exceptional points, Phys. Rev. A 85(6), 064103 (2012)
CrossRef
ADS
Google scholar
|
[22] |
W. Wang, X. Wang, and G. Ma, Non-Hermitian morphing of topological modes, Nature 608(7921), 50 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[23] |
W. Wang, X. Wang, and G. Ma, Extended state in a localized continuum, Phys. Rev. Lett. 129(26), 264301 (2022)
CrossRef
ADS
Google scholar
|
[24] |
A. Ghatak, M. Brandenbourger, J. Van Wezel, and C. Coulais, Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial, Proc. Natl. Acad. Sci. USA 117(47), 29561 (2020)
|
[25] |
X. Zhang, Y. Tian, J. H. Jiang, M. H. Lu, and Y. F. Chen, Observation of higher-order non-Hermitian skin effect, Nat. Commun. 12(1), 5377 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
Z. Li, L. W. Wang, X. Wang, Z. K. Lin, G. Ma, and J. H. Jiang, Observation of dynamic non-Hermitian skin effects, Nat. Commun. 15(1), 6544 (2024)
CrossRef
ADS
Google scholar
|
[27] |
W. Tang, K. Ding, and G. Ma, Direct measurement of topological properties of an exceptional parabola, Phys. Rev. Lett. 127(3), 034301 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[28] |
H. Schomerus, Nonreciprocal response theory of non-Hermitian mechanical metamaterials, Response phase transition from the skin effect of zero modes, Phys. Rev. Res. 2(1), 013058 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
X. Wang, W. Wang, and G. Ma, Extended topological mode in a one-dimensional non-Hermitian acoustic crystal, AAPPS Bull. 33(1), 23 (2023)
CrossRef
ADS
Google scholar
|
[30] |
L. Zhang, Y. Yang, Y. Ge, Y. J. Guan, Q. Chen, Q. Yan, F. Chen, R. Xi, Y. Li, D. Jia, S. Q. Yuan, H. X. Sun, H. Chen, and B. Zhang, Acoustic non-Hermitian skin effect from twisted winding topology, Nat. Commun. 12(1), 6297 (2021)
CrossRef
ADS
arXiv
Google scholar
|
/
〈 |
|
〉 |