
Tunable soliton molecules enabled by a nanotubes-based mode-locked fiber laser
Congyu Zhang, Wenhao Lyu, Linyu Cong, Ziyu Gu, Zhouqi Zhang, Guangyu Wang, Yunyu Lyu, Boye Yang, Ijaz Ahmad, Bo Fu
Front. Phys. ›› 2025, Vol. 20 ›› Issue (5) : 052201.
Tunable soliton molecules enabled by a nanotubes-based mode-locked fiber laser
Soliton molecules are fascinating phenomena in ultrafast lasers which have potential for increasing the capacity of fiber optic communication. The investigation of reliable materials will be of great benefit to the generation of soliton molecules. Herein, an all-fiber laser cavity was built incorporating carbon nanotubes-based saturable absorber. Mode-locked pulses were obtained at 1565.0 nm with a 60 dB SNR and a 4.5 W peak power. Soliton molecules were subsequently observed after increasing the pump power and tuning polarization state in the same cavity, showing variable separation of pulses between 4.87 and 25.76 ps. Furthermore, these tunable soliton molecules were verified and investigated through numerical simulation, where the tuning of pump power and polarization state were simulated. These results demonstrate that soliton molecules are promising to be applied in optical communication, where carbon nanotube-based mode-locked fiber lasers serve as a reliable platform for the generation of these soliton molecules.
ultrafast lasers / carbon nanotubes / mode-locking / soliton molecules
[1] |
N. Picqué and T. W. Hänsch, Frequency comb spectroscopy, Nat. Photonics 13(3), 146 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[2] |
Z. Li, L. Xiao, Z. Feng, Z. Liu, D. Wang, and C. Lei, Sequentially timed all-optical mapping photography with quantitative phase imaging capability, Opt. Lett. 49(18), 5059 (2024)
CrossRef
ADS
Google scholar
|
[3] |
K. Sugioka and Y. Cheng, Ultrafast lasers-reliable tools for advanced materials processing, Light Sci. Appl. 3(4), e149 (2014)
CrossRef
ADS
Google scholar
|
[4] |
C. Zhang, L. Zhang, H. Zhang, B. Fu, J. Wang, and M. Qiu, Pulsed polarized vortex beam enabled by metafiber lasers, PhotoniX 5(1), 36 (2024)
CrossRef
ADS
Google scholar
|
[5] |
P. Grelu and N. Akhmediev, Dissipative solitons for mode-locked lasers, Nat. Photonics 6(2), 84 (2012)
CrossRef
ADS
Google scholar
|
[6] |
N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, R. R. Galiev, D. A. Chermoshentsev, N. Y. Dmitriev, A. N. Danilin, E. A. Lonshakov, K. N. Min’kov, D. M. Sokol, S. J. Cordette, Y. H. Luo, W. Liang, J. Liu, and I. A. Bilenko, Recent advances in laser self-injection locking to high-q microresonators, Front. Phys. (Beijing) 18(2), 21305 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[7] |
L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, Soliton molecules and multisoliton states in ultrafast fibre lasers: Intrinsic complexes in dissipative systems, Appl. Sci. (Basel) 8(2), 201 (2018)
CrossRef
ADS
Google scholar
|
[8] |
H. Haus, E. Ippen, and K. Tamura, Additive-pulse modelocking in fiber lasers, IEEE J. Quantum Electron. 30(1), 200 (1994)
CrossRef
ADS
Google scholar
|
[9] |
S. M. Kobtsev, Artificial saturable absorbers for ultrafast fibre lasers, Opt. Fiber Technol. 68, 102764 (2022)
CrossRef
ADS
Google scholar
|
[10] |
A. I. Siahlo, L. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, A high-speed demultiplexer based on a nonlinear optical loop mirror with a photonic crystal fiber, IEEE Photonics Technol. Lett. 15(8), 1147 (2003)
CrossRef
ADS
Google scholar
|
[11] |
J. Sun, H. Cheng, L. Xu, B. Fu, X. Liu, and H. Zhang, Ag/MXene composite as a broadband nonlinear modulator for ultrafast photonics, ACS Photonics 10(9), 3133 (2023)
CrossRef
ADS
Google scholar
|
[12] |
U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers, IEEE J. Sel. Top. Quantum Electron. 2(3), 435 (1996)
CrossRef
ADS
Google scholar
|
[13] |
U. Keller and A. C. Tropper, Passively modelocked surface-emitting semiconductor lasers, Phys. Rep. 429(2), 67 (2006)
CrossRef
ADS
Google scholar
|
[14] |
F. Ceballos and H. Zhao, Ultrafast laser spectroscopy of two-dimensional materials beyond graphene, Adv. Funct. Mater. 27(19), 1604509 (2017)
CrossRef
ADS
Google scholar
|
[15] |
B. Fu, J. Sun, C. Wang, C. Shang, L. Xu, J. Li, H. Zhang, MXenes: Synthesis, and optical properties, and applications in ultrafast photonics, Small 17(11), 2006054 (2021)
CrossRef
ADS
Google scholar
|
[16] |
X. Liu, Q. Guo, and J. Qiu, Emerging low-dimensional materials for nonlinear optics and ultrafast photonics, Adv. Mater. 29(14), 1605886 (2017)
CrossRef
ADS
Google scholar
|
[17] |
W. Lyu, J. An, Y. Lin, P. Qiu, G. Wang, J. Chao, and B. Fu, Fabrication and applications of heterostructure materials for broadband ultrafast photonics, Adv. Opt. Mater. 11(12), 2300124 (2023)
CrossRef
ADS
Google scholar
|
[18] |
P. Avouris, M. Freitag, and V. Perebeinos, Carbon-nanotube photonics and optoelectronics, Nat. Photonics 2(6), 341 (2008)
CrossRef
ADS
Google scholar
|
[19] |
M. Terrones, H. Terrones, N. de Jonge, and J. Bonard, Carbon nanotube electron sources and applications, Philos. Trans. Royal Soc. A 362(1823), 2239 (2004)
CrossRef
ADS
Google scholar
|
[20] |
V. Schroeder, S. Savagatrup, M. He, S. Lin, and T. M. Swager, Carbon nanotube chemical sensors, Chem. Rev. 119(1), 599 (2019)
CrossRef
ADS
Google scholar
|
[21] |
J. Sun, Y. Wang, C. Zhang, L. Xu, and B. Fu, Spatiotemporal nonlinear dynamics in multimode fiber laser based on carbon nanotubes, Front. Phys. (Beijing) 19(5), 52201 (2024)
CrossRef
ADS
Google scholar
|
[22] |
K. Y. Lau, X. Liu, and J. Qiu, A comparison for saturable absorbers: carbon nanotube versus graphene, Adv. Photon. Res. 3(10), 2200023 (2022)
CrossRef
ADS
Google scholar
|
[23] |
X. Zhao, H. Jin, J. Liu, J. Chao, T. Liu, H. Zhang, G. Wang, W. Lyu, S. Wageh, O. A. Al-Hartomy, A. G. Al-Sehemi, B. Fu, and H. Zhang, Integration and applications of nanomaterials for ultrafast photonics, Laser Photonics Rev. 16(11), 2200386 (2022)
CrossRef
ADS
Google scholar
|
[24] |
L. Dai, Z. Huang, Q. Huang, C. Zhao, A. Rozhin, S. Sergeyev, M. Al Araimi, and C. Mou, Carbon nanotube mode-locked fiber lasers: Recent progress and perspectives, Nanophotonics 10(2), 749 (2020)
CrossRef
ADS
Google scholar
|
[25] |
L. Li, H. Huang, L. Su, D. Shen, D. Tang, M. Klimczak, and L. Zhao, Various soliton molecules in fiber systems, Appl. Opt. 58(10), 2745 (2019)
CrossRef
ADS
Google scholar
|
[26] |
E. Garmire, Resonant optical nonlinearities in semiconductors, IEEE J. Sel. Top. Quantum Electron. 6(6), 1094 (2000)
CrossRef
ADS
Google scholar
|
[27] |
R. Ulrich and A. Simon, Polarization optics of twisted single-mode fibers, Appl. Opt. 18(13), 2241 (1979)
CrossRef
ADS
Google scholar
|
[28] |
A. Smith, Single-mode fibre pressure sensitivity, Electron. Lett. 16(20), 773 (1980)
CrossRef
ADS
Google scholar
|
[29] |
K. J. Blow, N. J. Doran, and D. Wood, Polarization instabilities for solitons in birefringent fibers, Opt. Lett. 12(3), 202 (1987)
CrossRef
ADS
Google scholar
|
[30] |
L. Huang, H. N. Pedrosa, and T. D. Krauss, Ultrafast ground-state recovery of single-walled carbon nanotubes, Phys. Rev. Lett. 93(1), 017403 (2004)
CrossRef
ADS
Google scholar
|
[31] |
X. Xu, S. Ruan, J. Zhai, L. Li, J. Pei, and Z. Tang, Facile active control of a pulsed erbium-doped fiber laser using modulation depth tunable carbon nanotubes, Photon. Res. 6(11), 996 (2018)
CrossRef
ADS
Google scholar
|
[32] |
H. Qiang, Q. Qiao, H. Fu, J. Peng, K. Huang, and H. Zeng, Observation of soliton molecules in NPR mode-locked Er-fiber laser via birefringence management, IEEE Photonics Technol. Lett. 31(8), 639 (2019)
CrossRef
ADS
Google scholar
|
[33] |
B. Lu, Y. Wang, X. Qi, H. Chen, M. Jiang, L. Hou, K. Huang, J. Kang, and J. Bai, Observation of bound state solitons in tunable all-polarization-maintaining Yb-doped fiber laser, Laser Phys. 27(7), 075102 (2017)
CrossRef
ADS
Google scholar
|
[34] |
A. Komarov, K. Komarov, and F. Sanchez, Quantization of binding energy of structural solitons in passive mode-locked fiber lasers, Phys. Rev. A 79(3), 033807 (2009)
CrossRef
ADS
Google scholar
|
[35] |
D. Mao,Z. Yuan,K. Dai,Y. Chen,H. Ma, Q. Ling,J. Zheng,Y. Zhang,D. Chen,Y. Cui, Z. Sun,B. A. Malomed, Temporal and spatiotemporal soliton molecules in ultrafast fibre lasers, Nanophotonics, doi: 10.1515/nanoph-2024-0590 (2025)
|
[36] |
H. Zhang, D. Mao, Y. Du, C. Zeng, Z. Sun, and J. Zhao, Heteronuclear multicolor soliton compounds induced by convex-concave phase in fiber lasers, Commun. Phys. 6(1), 191 (2023)
CrossRef
ADS
Google scholar
|
[37] |
H. Shimizu, S. Yamazaki, T. Ono, and K. Emura, Highly practical fiber squeezer polarization controller, J. Lightwave Technol. 9(10), 1217 (1991)
CrossRef
ADS
Google scholar
|
[38] |
L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, Widely spaced bound states in a soliton fiber laser with graphene saturable absorber, IEEE Photonics Technol. Lett. 25(12), 1184 (2013)
CrossRef
ADS
Google scholar
|
[39] |
P. Rohrmann, A. Hause, and F. Mitschke, Two-soliton and three-soliton molecules in optical fibers, Phys. Rev. A 87(4), 043834 (2013)
CrossRef
ADS
Google scholar
|
[40] |
J. H. Zhang, H. Q. Qin, Z. Z. Si, Y. H. Jia, N. A. Kudryashov, Y. Y. Wang, and C. Q. Dai, Pure-quartic soliton attracted state in mode-locked fiber lasers, Chaos Solitons Fractals 187, 115380 (2024)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |