Tunable soliton molecules enabled by a nanotubes-based mode-locked fiber laser

Congyu Zhang, Wenhao Lyu, Linyu Cong, Ziyu Gu, Zhouqi Zhang, Guangyu Wang, Yunyu Lyu, Boye Yang, Ijaz Ahmad, Bo Fu

Front. Phys. ›› 2025, Vol. 20 ›› Issue (5) : 052201.

PDF(9717 KB)
PDF(9717 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (5) : 052201. DOI: 10.15302/frontphys.2025.052201
RESEARCH ARTICLE

Tunable soliton molecules enabled by a nanotubes-based mode-locked fiber laser

Author information +
History +

Abstract

Soliton molecules are fascinating phenomena in ultrafast lasers which have potential for increasing the capacity of fiber optic communication. The investigation of reliable materials will be of great benefit to the generation of soliton molecules. Herein, an all-fiber laser cavity was built incorporating carbon nanotubes-based saturable absorber. Mode-locked pulses were obtained at 1565.0 nm with a 60 dB SNR and a 4.5 W peak power. Soliton molecules were subsequently observed after increasing the pump power and tuning polarization state in the same cavity, showing variable separation of pulses between 4.87 and 25.76 ps. Furthermore, these tunable soliton molecules were verified and investigated through numerical simulation, where the tuning of pump power and polarization state were simulated. These results demonstrate that soliton molecules are promising to be applied in optical communication, where carbon nanotube-based mode-locked fiber lasers serve as a reliable platform for the generation of these soliton molecules.

Graphical abstract

Keywords

ultrafast lasers / carbon nanotubes / mode-locking / soliton molecules

Cite this article

Download citation ▾
Congyu Zhang, Wenhao Lyu, Linyu Cong, Ziyu Gu, Zhouqi Zhang, Guangyu Wang, Yunyu Lyu, Boye Yang, Ijaz Ahmad, Bo Fu. Tunable soliton molecules enabled by a nanotubes-based mode-locked fiber laser. Front. Phys., 2025, 20(5): 052201 https://doi.org/10.15302/frontphys.2025.052201

References

[1]
N. Picqué and T. W. Hänsch, Frequency comb spectroscopy, Nat. Photonics 13(3), 146 (2019)
CrossRef ADS arXiv Google scholar
[2]
Z. Li, L. Xiao, Z. Feng, Z. Liu, D. Wang, and C. Lei, Sequentially timed all-optical mapping photography with quantitative phase imaging capability, Opt. Lett. 49(18), 5059 (2024)
CrossRef ADS Google scholar
[3]
K. Sugioka and Y. Cheng, Ultrafast lasers-reliable tools for advanced materials processing, Light Sci. Appl. 3(4), e149 (2014)
CrossRef ADS Google scholar
[4]
C. Zhang, L. Zhang, H. Zhang, B. Fu, J. Wang, and M. Qiu, Pulsed polarized vortex beam enabled by metafiber lasers, PhotoniX 5(1), 36 (2024)
CrossRef ADS Google scholar
[5]
P. Grelu and N. Akhmediev, Dissipative solitons for mode-locked lasers, Nat. Photonics 6(2), 84 (2012)
CrossRef ADS Google scholar
[6]
N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, R. R. Galiev, D. A. Chermoshentsev, N. Y. Dmitriev, A. N. Danilin, E. A. Lonshakov, K. N. Min’kov, D. M. Sokol, S. J. Cordette, Y. H. Luo, W. Liang, J. Liu, and I. A. Bilenko, Recent advances in laser self-injection locking to high-q microresonators, Front. Phys. (Beijing) 18(2), 21305 (2023)
CrossRef ADS arXiv Google scholar
[7]
L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, Soliton molecules and multisoliton states in ultrafast fibre lasers: Intrinsic complexes in dissipative systems, Appl. Sci. (Basel) 8(2), 201 (2018)
CrossRef ADS Google scholar
[8]
H. Haus, E. Ippen, and K. Tamura, Additive-pulse modelocking in fiber lasers, IEEE J. Quantum Electron. 30(1), 200 (1994)
CrossRef ADS Google scholar
[9]
S. M. Kobtsev, Artificial saturable absorbers for ultrafast fibre lasers, Opt. Fiber Technol. 68, 102764 (2022)
CrossRef ADS Google scholar
[10]
A. I. Siahlo, L. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, A high-speed demultiplexer based on a nonlinear optical loop mirror with a photonic crystal fiber, IEEE Photonics Technol. Lett. 15(8), 1147 (2003)
CrossRef ADS Google scholar
[11]
J. Sun, H. Cheng, L. Xu, B. Fu, X. Liu, and H. Zhang, Ag/MXene composite as a broadband nonlinear modulator for ultrafast photonics, ACS Photonics 10(9), 3133 (2023)
CrossRef ADS Google scholar
[12]
U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers, IEEE J. Sel. Top. Quantum Electron. 2(3), 435 (1996)
CrossRef ADS Google scholar
[13]
U. Keller and A. C. Tropper, Passively modelocked surface-emitting semiconductor lasers, Phys. Rep. 429(2), 67 (2006)
CrossRef ADS Google scholar
[14]
F. Ceballos and H. Zhao, Ultrafast laser spectroscopy of two-dimensional materials beyond graphene, Adv. Funct. Mater. 27(19), 1604509 (2017)
CrossRef ADS Google scholar
[15]
B. Fu, J. Sun, C. Wang, C. Shang, L. Xu, J. Li, H. Zhang, MXenes: Synthesis, and optical properties, and applications in ultrafast photonics, Small 17(11), 2006054 (2021)
CrossRef ADS Google scholar
[16]
X. Liu, Q. Guo, and J. Qiu, Emerging low-dimensional materials for nonlinear optics and ultrafast photonics, Adv. Mater. 29(14), 1605886 (2017)
CrossRef ADS Google scholar
[17]
W. Lyu, J. An, Y. Lin, P. Qiu, G. Wang, J. Chao, and B. Fu, Fabrication and applications of heterostructure materials for broadband ultrafast photonics, Adv. Opt. Mater. 11(12), 2300124 (2023)
CrossRef ADS Google scholar
[18]
P. Avouris, M. Freitag, and V. Perebeinos, Carbon-nanotube photonics and optoelectronics, Nat. Photonics 2(6), 341 (2008)
CrossRef ADS Google scholar
[19]
M. Terrones, H. Terrones, N. de Jonge, and J. Bonard, Carbon nanotube electron sources and applications, Philos. Trans. Royal Soc. A 362(1823), 2239 (2004)
CrossRef ADS Google scholar
[20]
V. Schroeder, S. Savagatrup, M. He, S. Lin, and T. M. Swager, Carbon nanotube chemical sensors, Chem. Rev. 119(1), 599 (2019)
CrossRef ADS Google scholar
[21]
J. Sun, Y. Wang, C. Zhang, L. Xu, and B. Fu, Spatiotemporal nonlinear dynamics in multimode fiber laser based on carbon nanotubes, Front. Phys. (Beijing) 19(5), 52201 (2024)
CrossRef ADS Google scholar
[22]
K. Y. Lau, X. Liu, and J. Qiu, A comparison for saturable absorbers: carbon nanotube versus graphene, Adv. Photon. Res. 3(10), 2200023 (2022)
CrossRef ADS Google scholar
[23]
X. Zhao, H. Jin, J. Liu, J. Chao, T. Liu, H. Zhang, G. Wang, W. Lyu, S. Wageh, O. A. Al-Hartomy, A. G. Al-Sehemi, B. Fu, and H. Zhang, Integration and applications of nanomaterials for ultrafast photonics, Laser Photonics Rev. 16(11), 2200386 (2022)
CrossRef ADS Google scholar
[24]
L. Dai, Z. Huang, Q. Huang, C. Zhao, A. Rozhin, S. Sergeyev, M. Al Araimi, and C. Mou, Carbon nanotube mode-locked fiber lasers: Recent progress and perspectives, Nanophotonics 10(2), 749 (2020)
CrossRef ADS Google scholar
[25]
L. Li, H. Huang, L. Su, D. Shen, D. Tang, M. Klimczak, and L. Zhao, Various soliton molecules in fiber systems, Appl. Opt. 58(10), 2745 (2019)
CrossRef ADS Google scholar
[26]
E. Garmire, Resonant optical nonlinearities in semiconductors, IEEE J. Sel. Top. Quantum Electron. 6(6), 1094 (2000)
CrossRef ADS Google scholar
[27]
R. Ulrich and A. Simon, Polarization optics of twisted single-mode fibers, Appl. Opt. 18(13), 2241 (1979)
CrossRef ADS Google scholar
[28]
A. Smith, Single-mode fibre pressure sensitivity, Electron. Lett. 16(20), 773 (1980)
CrossRef ADS Google scholar
[29]
K. J. Blow, N. J. Doran, and D. Wood, Polarization instabilities for solitons in birefringent fibers, Opt. Lett. 12(3), 202 (1987)
CrossRef ADS Google scholar
[30]
L. Huang, H. N. Pedrosa, and T. D. Krauss, Ultrafast ground-state recovery of single-walled carbon nanotubes, Phys. Rev. Lett. 93(1), 017403 (2004)
CrossRef ADS Google scholar
[31]
X. Xu, S. Ruan, J. Zhai, L. Li, J. Pei, and Z. Tang, Facile active control of a pulsed erbium-doped fiber laser using modulation depth tunable carbon nanotubes, Photon. Res. 6(11), 996 (2018)
CrossRef ADS Google scholar
[32]
H. Qiang, Q. Qiao, H. Fu, J. Peng, K. Huang, and H. Zeng, Observation of soliton molecules in NPR mode-locked Er-fiber laser via birefringence management, IEEE Photonics Technol. Lett. 31(8), 639 (2019)
CrossRef ADS Google scholar
[33]
B. Lu, Y. Wang, X. Qi, H. Chen, M. Jiang, L. Hou, K. Huang, J. Kang, and J. Bai, Observation of bound state solitons in tunable all-polarization-maintaining Yb-doped fiber laser, Laser Phys. 27(7), 075102 (2017)
CrossRef ADS Google scholar
[34]
A. Komarov, K. Komarov, and F. Sanchez, Quantization of binding energy of structural solitons in passive mode-locked fiber lasers, Phys. Rev. A 79(3), 033807 (2009)
CrossRef ADS Google scholar
[35]
D. Mao,Z. Yuan,K. Dai,Y. Chen,H. Ma, Q. Ling,J. Zheng,Y. Zhang,D. Chen,Y. Cui, Z. Sun,B. A. Malomed, Temporal and spatiotemporal soliton molecules in ultrafast fibre lasers, Nanophotonics, doi: 10.1515/nanoph-2024-0590 (2025)
[36]
H. Zhang, D. Mao, Y. Du, C. Zeng, Z. Sun, and J. Zhao, Heteronuclear multicolor soliton compounds induced by convex-concave phase in fiber lasers, Commun. Phys. 6(1), 191 (2023)
CrossRef ADS Google scholar
[37]
H. Shimizu, S. Yamazaki, T. Ono, and K. Emura, Highly practical fiber squeezer polarization controller, J. Lightwave Technol. 9(10), 1217 (1991)
CrossRef ADS Google scholar
[38]
L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, Widely spaced bound states in a soliton fiber laser with graphene saturable absorber, IEEE Photonics Technol. Lett. 25(12), 1184 (2013)
CrossRef ADS Google scholar
[39]
P. Rohrmann, A. Hause, and F. Mitschke, Two-soliton and three-soliton molecules in optical fibers, Phys. Rev. A 87(4), 043834 (2013)
CrossRef ADS Google scholar
[40]
J. H. Zhang, H. Q. Qin, Z. Z. Si, Y. H. Jia, N. A. Kudryashov, Y. Y. Wang, and C. Q. Dai, Pure-quartic soliton attracted state in mode-locked fiber lasers, Chaos Solitons Fractals 187, 115380 (2024)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by Beijing Natural Science Foundation (Grant Nos. 1252023 and QY24141), the Aeronautical Science Foundation of China (No. 2024Z073051005), the State Key Laboratory of Advanced Optical Communication Systems and Networks, China, and the National College Students Innovation and Entrepreneurship Training Program.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(9717 KB)

Accesses

Citations

Detail

Sections
Recommended

/