Manipulation of valley polarization and topology in monolayer MoSnC2S6 and MoPbGe2Te6

Xianjuan He, Wenzhe Zhou, Zhenzhen Wan, Yating Li, Chuyu Li, Fangping Ouyang

Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044210.

PDF(10803 KB)
PDF(10803 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044210. DOI: 10.15302/frontphys.2025.044210
RESEARCH ARTICLE

Manipulation of valley polarization and topology in monolayer MoSnC2S6 and MoPbGe2Te6

Author information +
History +

Abstract

The ferrovalley materials and their nontrivial band topological properties have recently attracted extensive interest in theoretical physics and their promising applications. Using first-principles calculations, we predict the valley polarization in monolayer MoSnC2S6 and MoPbGe2Te6. These materials possess a robust ferromagnetic ground state, with high Curie temperatures of 460 K and 319.5 K, respectively. The intrinsic valley polarization arises from the breaking of time-reversal symmetry and spatial inversion symmetry. Biaxial strain and electron correlation (U) can modulate the valley polarization and bandgap. The quantum anomalous Hall phase is driven by biaxial strain and U during the process of bandgap closing, opening, reclosing, and reopening. This can be demonstrated by the chiral edge states at the edges and the plateau in the anomalous Hall conductivity. During the closing and opening of the bandgap, the sign and magnitude of the Berry curvature also vary. Our work provides an ideal platform for valleytronics and the quantum anomalous Hall effect.

Graphical abstract

Keywords

first-principles calculations / ferrovalley / Curie temperature / quantum anomalous Hall effect

Cite this article

Download citation ▾
Xianjuan He, Wenzhe Zhou, Zhenzhen Wan, Yating Li, Chuyu Li, Fangping Ouyang. Manipulation of valley polarization and topology in monolayer MoSnC2S6 and MoPbGe2Te6. Front. Phys., 2025, 20(4): 044210 https://doi.org/10.15302/frontphys.2025.044210

References

[1]
D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99(23), 236809 (2007)
CrossRef ADS Google scholar
[2]
Z. Song, X. Sun, J. Zheng, F. Pan, Y. Hou, M. H. Yung, J. Yang, and J. Lu, Spontaneous valley splitting and valley pseudospin field effect transistors of monolayer VAgP2Se6, Nanoscale 10(29), 13986 (2018)
CrossRef ADS Google scholar
[3]
W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77(23), 235406 (2008)
CrossRef ADS arXiv Google scholar
[4]
D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
CrossRef ADS arXiv Google scholar
[5]
Y. Liu, Y. Gao, S. Zhang, J. He, J. Yu, and Z. Liu, Valleytronics in transition metal dichalcogenides materials, Nano Res. 12(11), 2695 (2019)
CrossRef ADS Google scholar
[6]
L. Cao, J. Zhong, J. Yu, C. Zeng, J. Ding, C. Cong, X. Yue, Z. Liu, and Y. Liu, Valley-polarized local excitons in WSe2/WS2 vertical heterostructures, Opt. Express 28(15), 22135 (2020)
CrossRef ADS Google scholar
[7]
W. Zhou, Z. Yang, A. Li, M. Long, and F. Ouyang, Spin and valley splittings in Janus monolayer WSSe on a MnO(111) surface: Large effective Zeeman field and opening of a helical gap, Phys. Rev. B 101(4), 045113 (2020)
CrossRef ADS Google scholar
[8]
G. Aivazian, Z. Gong, A. M. Jones, R. L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 11(2), 148 (2015)
CrossRef ADS arXiv Google scholar
[9]
D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2, Phys. Rev. Lett. 114(3), 037401 (2015)
CrossRef ADS arXiv Google scholar
[10]
K. F. Mak, K. L. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)
CrossRef ADS Google scholar
[11]
H. L. Zeng, J. F. Dai, W. Yao, D. Xiao, and X. D. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
CrossRef ADS arXiv Google scholar
[12]
Y. C. Cheng, Q. Y. Zhang, and U. Schwingenschlögl, Valley polarization in magnetically doped single-layer transition-metal dichalcogenides, Phys. Rev. B 89(15), 155429 (2014)
CrossRef ADS Google scholar
[13]
R. Peng, Y. Ma, S. Zhang, B. Huang, and Y. Dai, Valley polarization in Janus single-layer MoSSe via magnetic doping, J. Phys. Chem. Lett. 9(13), 3612 (2018)
CrossRef ADS Google scholar
[14]
L. Xu, M. Yang, L. Shen, J. Zhou, T. Zhu, and Y. P. Feng, Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate, Phys. Rev. B 97(4), 041405 (2018)
CrossRef ADS Google scholar
[15]
H. Zhang, W. Yang, Y. Ning, and X. Xu, Abundant valley-polarized states in two-dimensional ferromagnetic van der Waals heterostructures, Phys. Rev. B 101(20), 205404 (2020)
CrossRef ADS Google scholar
[16]
C. Ke, Y. Wu, W. Yang, Z. Wu, C. Zhang, X. Li, and J. Kang, Large and controllable spin-valley splitting in two-dimensional WS2/h-VN heterostructure, Phys. Rev. B 100(19), 195435 (2019)
CrossRef ADS Google scholar
[17]
W. Y. Tong, S. J. Gong, X. Wan, and C. G. Duan, Concepts of ferrovalley material and anomalous valley Hall effect, Nat. Commun. 7(1), 13612 (2016)
CrossRef ADS Google scholar
[18]
P. Li, B. Liu, S. Chen, W. X. Zhang, and Z. X. Guo, Progress on two-dimensional ferrovalley materials, Chin. Phys. B 33(1), 017505 (2024)
CrossRef ADS Google scholar
[19]
W. Xun, C. Wu, H. Sun, W. Zhang, Y. Z. Wu, and P. Li, Coexisting magnetism, ferroelectric, and ferrovalley multiferroic in stacking-dependent two-dimensional materials, Nano Lett. 24(11), 3541 (2024)
CrossRef ADS Google scholar
[20]
P. Li, C. Wu, C. Peng, M. Yang, and W. Xun, Multifield tunable valley splitting in two-dimensional MXene Cr2COOH, Phys. Rev. B 108(19), 195424 (2023)
CrossRef ADS Google scholar
[21]
P. Li, X. Yang, Q. S. Jiang, Y. Z. Wu, and W. Xun, Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers, Phys. Rev. Mater. 7(6), 064002 (2023)
CrossRef ADS Google scholar
[22]
J. Liu, W. J. Hou, C. Cheng, H. X. Fu, J. T. Sun, and S. Meng, Intrinsic valley polarization of magnetic VSe2 monolayers, J. Phys. Condens. Matter 29(25), 255501 (2017)
CrossRef ADS Google scholar
[23]
P. Zhao, Y. Dai, H. Wang, B. Huang, and Y. Ma, Intrinsic valley polarization and anomalous valley Hall effect in single-layer 2H-FeCl2, ChemPhysMater 1(1), 56 (2022)
CrossRef ADS Google scholar
[24]
S. D. Guo, W. Q. Mu, and B. G. Liu, Valley-polarized quantum anomalous Hall insulator in monolayer RuBr2, 2D Mater. 9(3), 035011 (2022)
CrossRef ADS Google scholar
[25]
X. Li, T. Cao, Q. Niu, J. R. Shi, and J. Feng, Coupling the valley degree of freedom to antiferromagnetic order, Proc. Natl. Acad. Sci. U S A 110(10), 3738 (2013)
CrossRef ADS Google scholar
[26]
W. Zhou, G. Zheng, A. Li, D. Zhang, and F. Ouyang, Orbital contribution to the regulation of the spin−valley coupling in antiferromagnetic monolayer MnPTe3, Phys. Rev. B 107(3), 035139 (2023)
CrossRef ADS Google scholar
[27]
R. Peng, Y. D. Ma, X. L. Xu, Z. L. He, B. B. Huang, and Y. Dai, Intrinsic anomalous valley Hall effect in single-layer Nb3I8, Phys. Rev. B 102(3), 035412 (2020)
CrossRef ADS Google scholar
[28]
L. Feng, X. Chen, and J. Qi, Nonvolatile electric field control of spin-valley-layer polarized anomalous Hall effect in a two-dimensional multiferroic semiconductor bilayer, Phys. Rev. B 108(11), 115407 (2023)
CrossRef ADS Google scholar
[29]
D. Zhang, A. Li, X. Chen, W. Zhou, and F. Ouyang, Tuning valley splitting and magnetic anisotropy of multiferroic CuMP2X6 (M = Cr, V; X = S, Se) monolayer, Phys. Rev. B 105(8), 085408 (2022)
CrossRef ADS Google scholar
[30]
Y. Wu, J. Tong, L. Deng, F. Luo, F. Tian, G. Qin, X. Zhang, Realizing spontaneous valley polarization, and topological phase transitions in monolayer ScX2 (X = Cl, Br, I), Acta Mater. 246, 118731 (2023)
CrossRef ADS Google scholar
[31]
G. Zheng, S. Qu, W. Zhou, and F. Ouyang, Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties, Front. Phys. (Beijing) 18(5), 53302 (2023)
CrossRef ADS Google scholar
[32]
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
CrossRef ADS Google scholar
[33]
Y. Shao, W. Lv, J. Guo, B. Qi, W. Lv, S. Li, G. Guo, and Z. Zeng, The current modulation of anomalous Hall effect in van der Waals Fe3GeTe2/WTe2 heterostructures, Appl. Phys. Lett. 116(9), 092401 (2020)
CrossRef ADS Google scholar
[34]
X. Zhu, Y. Chen, Z. Liu, Y. Han, and Z. Qiao, Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials, Front. Phys. (Beijing) 18(2), 23302 (2022)
CrossRef ADS Google scholar
[35]
X. Deng, H. Yang, S. Qi, X. Xu, and Z. Qiao, Quantum anomalous Hall effect and giant Rashba spin−orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms, Front. Phys. (Beijing) 13(5), 137308 (2018)
CrossRef ADS Google scholar
[36]
H. Hu,W. Y. Tong,Y. H. Shen,X. Wan,C. G. Duan, Concepts of the half-valley-metal and quantum anomalous valley Hall effect, npj Comput. Mater. 6(1) (2020)
[37]
X. Kou, S. T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T. K. Lee, W. L. Lee, and K. L. Wang, Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit, Phys. Rev. Lett. 113(13), 137201 (2014)
CrossRef ADS Google scholar
[38]
J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator, Nat. Phys. 10(10), 731 (2014)
CrossRef ADS Google scholar
[39]
C. Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S. C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera, High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nat. Mater. 14(5), 473 (2015)
CrossRef ADS Google scholar
[40]
S. Zhang, C. Zhang, S. Zhang, W. Ji, P. Li, P. Wang, S. Li, and S. Yan, Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice, Phys. Rev. B 96(20), 205433 (2017)
CrossRef ADS Google scholar
[41]
H. Sun, S. S. Li, W. Ji, and C. W. Zhang, Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr, Phys. Rev. B 105(19), 195112 (2022)
CrossRef ADS Google scholar
[42]
B. Wu, Y. Song, W. Ji, P. Wang, S. Zhang, and C. Zhang, Quantum anomalous Hall effect in an antiferromagnetic monolayer of MoO, Phys. Rev. B 107(21), 214419 (2023)
CrossRef ADS Google scholar
[43]
J. Y. You, C. Chen, Z. Zhang, X. L. Sheng, S. A. Yang, and G. Su, Two-dimensional Weyl half-semimetal and tunable quantum anomalous Hall effect, Phys. Rev. B 100(6), 064408 (2019)
CrossRef ADS Google scholar
[44]
K. Dolui, S. Ray, and T. Das, Intrinsic large gap quantum anomalous Hall insulators in LaX (X = Br, Cl, I), Phys. Rev. B 92(20), 205133 (2015)
CrossRef ADS Google scholar
[45]
C. W. Hu, . Realization of an intrinsic ferromagnetic topological state in MnBi8Te13, Sci. Adv. 6(30), eaba4275 (2020)
CrossRef ADS Google scholar
[46]
M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Intrinsic quantized anomalous Hall effect in a moiré heterostructure, Science 367(6480), 900 (2020)
CrossRef ADS Google scholar
[47]
S. D. Guo, Y. L. Tao, W. Q. Mu, and B. G. Liu, Correlation-driven threefold topological phase transition in monolayer OsBr2, Frontiers of Physics 18(3), 33304 (2023)
CrossRef ADS Google scholar
[48]
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
CrossRef ADS Google scholar
[49]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[50]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[51]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[52]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[53]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[54]
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
CrossRef ADS Google scholar
[55]
G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)
CrossRef ADS Google scholar
[56]
V. Wang,N. Xu,J. C. Liu,G. Tang,W. T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267, 108033 (2021)
[57]
A. A. Mostofi,J. R. Yates,Y. S. Lee, I. Souza,D. Vanderbilt,N. Marzari, wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)
[58]
Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyer, and A. A. Soluyanov, Wannier tools: An open-source software package for novel topological materials, Comput. Phys. Commun. 224, 405 (2018)
CrossRef ADS Google scholar
[59]
L. Liu, X. Ren, J. H. Xie, B. Cheng, W. K. Liu, T. Y. An, H. W. Qin, and J. F. Hu, Magnetic switches via electric field in BN nanoribbons, Appl. Surf. Sci. 480, 300 (2019)
CrossRef ADS Google scholar
[60]
J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
CrossRef ADS Google scholar
[61]
P. W. Anderson, New approach to the theory of superexchange interactions, Phys. Rev. 115(1), 2 (1959)
CrossRef ADS Google scholar
[62]
J. Kanamori, Crystal distortion in magnetic compounds, J. Appl. Phys. 31(5), S14 (1960)
CrossRef ADS Google scholar
[63]
S. Yang, Y. Chen, and C. Jiang, Strain engineering of two‐dimensional materials: Methods, properties, and applications, InfoMat 3(4), 397 (2021)
CrossRef ADS Google scholar
[64]
S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011)
CrossRef ADS Google scholar
[65]
H. J. Conley, B. Wang, J. I. Ziegler, R. F. Jr Haglund, S. T. Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(8), 3626 (2013)
CrossRef ADS Google scholar
[66]
D. Wang, R. Wu, and A. J. Freeman, First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model, Phys. Rev. B 47(22), 14932 (1993)
CrossRef ADS Google scholar
[67]
M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B 71(3), 035105 (2005)
CrossRef ADS Google scholar
[68]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef ADS Google scholar
[69]
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.044210.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52073308, 12164046, and 12304097), the Key Project of the Natural Science Program of Xinjiang Uygur Autonomous Region (Grant No. 2023D01D03), the Tianchi Distinguished Professor Research Fund of Xinjiang Uygur Autonomous Region, the Tianchi-Talent Project for Young Doctors of Xinjiang Uygur Autonomous Region (No. 51052300570), China Postdoctoral Science Foundation (Grant Nos. 2022TQ0379 and 2023M733972), Hunan Provincial Natural Science Foundation of China (Grant Nos. 2023JJ40703 and 2021JJ30864), the Fundamental Research Funds for the Central Universities of Central South University (No. 2023ZZTS0385), and the State Key Laboratory of Powder Metallurgy at Central South University. This work was carried out in part using computing resources at the High-Performance Computing Center of Central South University.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(10803 KB)

Accesses

Citations

Detail

Sections
Recommended

/