
Manipulation of valley polarization and topology in monolayer MoSnC2S6 and MoPbGe2Te6
Xianjuan He, Wenzhe Zhou, Zhenzhen Wan, Yating Li, Chuyu Li, Fangping Ouyang
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044210.
Manipulation of valley polarization and topology in monolayer MoSnC2S6 and MoPbGe2Te6
The ferrovalley materials and their nontrivial band topological properties have recently attracted extensive interest in theoretical physics and their promising applications. Using first-principles calculations, we predict the valley polarization in monolayer MoSnC2S6 and MoPbGe2Te6. These materials possess a robust ferromagnetic ground state, with high Curie temperatures of 460 K and 319.5 K, respectively. The intrinsic valley polarization arises from the breaking of time-reversal symmetry and spatial inversion symmetry. Biaxial strain and electron correlation (U) can modulate the valley polarization and bandgap. The quantum anomalous Hall phase is driven by biaxial strain and U during the process of bandgap closing, opening, reclosing, and reopening. This can be demonstrated by the chiral edge states at the edges and the plateau in the anomalous Hall conductivity. During the closing and opening of the bandgap, the sign and magnitude of the Berry curvature also vary. Our work provides an ideal platform for valleytronics and the quantum anomalous Hall effect.
first-principles calculations / ferrovalley / Curie temperature / quantum anomalous Hall effect
[1] |
D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99(23), 236809 (2007)
CrossRef
ADS
Google scholar
|
[2] |
Z. Song, X. Sun, J. Zheng, F. Pan, Y. Hou, M. H. Yung, J. Yang, and J. Lu, Spontaneous valley splitting and valley pseudospin field effect transistors of monolayer VAgP2Se6, Nanoscale 10(29), 13986 (2018)
CrossRef
ADS
Google scholar
|
[3] |
W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77(23), 235406 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[4] |
D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
Y. Liu, Y. Gao, S. Zhang, J. He, J. Yu, and Z. Liu, Valleytronics in transition metal dichalcogenides materials, Nano Res. 12(11), 2695 (2019)
CrossRef
ADS
Google scholar
|
[6] |
L. Cao, J. Zhong, J. Yu, C. Zeng, J. Ding, C. Cong, X. Yue, Z. Liu, and Y. Liu, Valley-polarized local excitons in WSe2/WS2 vertical heterostructures, Opt. Express 28(15), 22135 (2020)
CrossRef
ADS
Google scholar
|
[7] |
W. Zhou, Z. Yang, A. Li, M. Long, and F. Ouyang, Spin and valley splittings in Janus monolayer WSSe on a MnO(111) surface: Large effective Zeeman field and opening of a helical gap, Phys. Rev. B 101(4), 045113 (2020)
CrossRef
ADS
Google scholar
|
[8] |
G. Aivazian, Z. Gong, A. M. Jones, R. L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 11(2), 148 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2, Phys. Rev. Lett. 114(3), 037401 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
K. F. Mak, K. L. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)
CrossRef
ADS
Google scholar
|
[11] |
H. L. Zeng, J. F. Dai, W. Yao, D. Xiao, and X. D. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[12] |
Y. C. Cheng, Q. Y. Zhang, and U. Schwingenschlögl, Valley polarization in magnetically doped single-layer transition-metal dichalcogenides, Phys. Rev. B 89(15), 155429 (2014)
CrossRef
ADS
Google scholar
|
[13] |
R. Peng, Y. Ma, S. Zhang, B. Huang, and Y. Dai, Valley polarization in Janus single-layer MoSSe via magnetic doping, J. Phys. Chem. Lett. 9(13), 3612 (2018)
CrossRef
ADS
Google scholar
|
[14] |
L. Xu, M. Yang, L. Shen, J. Zhou, T. Zhu, and Y. P. Feng, Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate, Phys. Rev. B 97(4), 041405 (2018)
CrossRef
ADS
Google scholar
|
[15] |
H. Zhang, W. Yang, Y. Ning, and X. Xu, Abundant valley-polarized states in two-dimensional ferromagnetic van der Waals heterostructures, Phys. Rev. B 101(20), 205404 (2020)
CrossRef
ADS
Google scholar
|
[16] |
C. Ke, Y. Wu, W. Yang, Z. Wu, C. Zhang, X. Li, and J. Kang, Large and controllable spin-valley splitting in two-dimensional WS2/h-VN heterostructure, Phys. Rev. B 100(19), 195435 (2019)
CrossRef
ADS
Google scholar
|
[17] |
W. Y. Tong, S. J. Gong, X. Wan, and C. G. Duan, Concepts of ferrovalley material and anomalous valley Hall effect, Nat. Commun. 7(1), 13612 (2016)
CrossRef
ADS
Google scholar
|
[18] |
P. Li, B. Liu, S. Chen, W. X. Zhang, and Z. X. Guo, Progress on two-dimensional ferrovalley materials, Chin. Phys. B 33(1), 017505 (2024)
CrossRef
ADS
Google scholar
|
[19] |
W. Xun, C. Wu, H. Sun, W. Zhang, Y. Z. Wu, and P. Li, Coexisting magnetism, ferroelectric, and ferrovalley multiferroic in stacking-dependent two-dimensional materials, Nano Lett. 24(11), 3541 (2024)
CrossRef
ADS
Google scholar
|
[20] |
P. Li, C. Wu, C. Peng, M. Yang, and W. Xun, Multifield tunable valley splitting in two-dimensional MXene Cr2COOH, Phys. Rev. B 108(19), 195424 (2023)
CrossRef
ADS
Google scholar
|
[21] |
P. Li, X. Yang, Q. S. Jiang, Y. Z. Wu, and W. Xun, Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers, Phys. Rev. Mater. 7(6), 064002 (2023)
CrossRef
ADS
Google scholar
|
[22] |
J. Liu, W. J. Hou, C. Cheng, H. X. Fu, J. T. Sun, and S. Meng, Intrinsic valley polarization of magnetic VSe2 monolayers, J. Phys. Condens. Matter 29(25), 255501 (2017)
CrossRef
ADS
Google scholar
|
[23] |
P. Zhao, Y. Dai, H. Wang, B. Huang, and Y. Ma, Intrinsic valley polarization and anomalous valley Hall effect in single-layer 2H-FeCl2, ChemPhysMater 1(1), 56 (2022)
CrossRef
ADS
Google scholar
|
[24] |
S. D. Guo, W. Q. Mu, and B. G. Liu, Valley-polarized quantum anomalous Hall insulator in monolayer RuBr2, 2D Mater. 9(3), 035011 (2022)
CrossRef
ADS
Google scholar
|
[25] |
X. Li, T. Cao, Q. Niu, J. R. Shi, and J. Feng, Coupling the valley degree of freedom to antiferromagnetic order, Proc. Natl. Acad. Sci. U S A 110(10), 3738 (2013)
CrossRef
ADS
Google scholar
|
[26] |
W. Zhou, G. Zheng, A. Li, D. Zhang, and F. Ouyang, Orbital contribution to the regulation of the spin−valley coupling in antiferromagnetic monolayer MnPTe3, Phys. Rev. B 107(3), 035139 (2023)
CrossRef
ADS
Google scholar
|
[27] |
R. Peng, Y. D. Ma, X. L. Xu, Z. L. He, B. B. Huang, and Y. Dai, Intrinsic anomalous valley Hall effect in single-layer Nb3I8, Phys. Rev. B 102(3), 035412 (2020)
CrossRef
ADS
Google scholar
|
[28] |
L. Feng, X. Chen, and J. Qi, Nonvolatile electric field control of spin-valley-layer polarized anomalous Hall effect in a two-dimensional multiferroic semiconductor bilayer, Phys. Rev. B 108(11), 115407 (2023)
CrossRef
ADS
Google scholar
|
[29] |
D. Zhang, A. Li, X. Chen, W. Zhou, and F. Ouyang, Tuning valley splitting and magnetic anisotropy of multiferroic CuMP2X6 (M = Cr, V; X = S, Se) monolayer, Phys. Rev. B 105(8), 085408 (2022)
CrossRef
ADS
Google scholar
|
[30] |
Y. Wu, J. Tong, L. Deng, F. Luo, F. Tian, G. Qin, X. Zhang, Realizing spontaneous valley polarization, and topological phase transitions in monolayer ScX2 (X = Cl, Br, I), Acta Mater. 246, 118731 (2023)
CrossRef
ADS
Google scholar
|
[31] |
G. Zheng, S. Qu, W. Zhou, and F. Ouyang, Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties, Front. Phys. (Beijing) 18(5), 53302 (2023)
CrossRef
ADS
Google scholar
|
[32] |
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
CrossRef
ADS
Google scholar
|
[33] |
Y. Shao, W. Lv, J. Guo, B. Qi, W. Lv, S. Li, G. Guo, and Z. Zeng, The current modulation of anomalous Hall effect in van der Waals Fe3GeTe2/WTe2 heterostructures, Appl. Phys. Lett. 116(9), 092401 (2020)
CrossRef
ADS
Google scholar
|
[34] |
X. Zhu, Y. Chen, Z. Liu, Y. Han, and Z. Qiao, Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials, Front. Phys. (Beijing) 18(2), 23302 (2022)
CrossRef
ADS
Google scholar
|
[35] |
X. Deng, H. Yang, S. Qi, X. Xu, and Z. Qiao, Quantum anomalous Hall effect and giant Rashba spin−orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms, Front. Phys. (Beijing) 13(5), 137308 (2018)
CrossRef
ADS
Google scholar
|
[36] |
H. Hu,W. Y. Tong,Y. H. Shen,X. Wan,C. G. Duan, Concepts of the half-valley-metal and quantum anomalous valley Hall effect, npj Comput. Mater. 6(1) (2020)
|
[37] |
X. Kou, S. T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T. K. Lee, W. L. Lee, and K. L. Wang, Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit, Phys. Rev. Lett. 113(13), 137201 (2014)
CrossRef
ADS
Google scholar
|
[38] |
J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator, Nat. Phys. 10(10), 731 (2014)
CrossRef
ADS
Google scholar
|
[39] |
C. Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S. C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera, High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nat. Mater. 14(5), 473 (2015)
CrossRef
ADS
Google scholar
|
[40] |
S. Zhang, C. Zhang, S. Zhang, W. Ji, P. Li, P. Wang, S. Li, and S. Yan, Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice, Phys. Rev. B 96(20), 205433 (2017)
CrossRef
ADS
Google scholar
|
[41] |
H. Sun, S. S. Li, W. Ji, and C. W. Zhang, Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr, Phys. Rev. B 105(19), 195112 (2022)
CrossRef
ADS
Google scholar
|
[42] |
B. Wu, Y. Song, W. Ji, P. Wang, S. Zhang, and C. Zhang, Quantum anomalous Hall effect in an antiferromagnetic monolayer of MoO, Phys. Rev. B 107(21), 214419 (2023)
CrossRef
ADS
Google scholar
|
[43] |
J. Y. You, C. Chen, Z. Zhang, X. L. Sheng, S. A. Yang, and G. Su, Two-dimensional Weyl half-semimetal and tunable quantum anomalous Hall effect, Phys. Rev. B 100(6), 064408 (2019)
CrossRef
ADS
Google scholar
|
[44] |
K. Dolui, S. Ray, and T. Das, Intrinsic large gap quantum anomalous Hall insulators in LaX (X = Br, Cl, I), Phys. Rev. B 92(20), 205133 (2015)
CrossRef
ADS
Google scholar
|
[45] |
C. W. Hu,
CrossRef
ADS
Google scholar
|
[46] |
M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Intrinsic quantized anomalous Hall effect in a moiré heterostructure, Science 367(6480), 900 (2020)
CrossRef
ADS
Google scholar
|
[47] |
S. D. Guo, Y. L. Tao, W. Q. Mu, and B. G. Liu, Correlation-driven threefold topological phase transition in monolayer OsBr2, Frontiers of Physics 18(3), 33304 (2023)
CrossRef
ADS
Google scholar
|
[48] |
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
CrossRef
ADS
Google scholar
|
[49] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[50] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[51] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[52] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[53] |
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef
ADS
Google scholar
|
[54] |
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
CrossRef
ADS
Google scholar
|
[55] |
G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)
CrossRef
ADS
Google scholar
|
[56] |
V. Wang,N. Xu,J. C. Liu,G. Tang,W. T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267, 108033 (2021)
|
[57] |
A. A. Mostofi,J. R. Yates,Y. S. Lee, I. Souza,D. Vanderbilt,N. Marzari, wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)
|
[58] |
Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyer, and A. A. Soluyanov, Wannier tools: An open-source software package for novel topological materials, Comput. Phys. Commun. 224, 405 (2018)
CrossRef
ADS
Google scholar
|
[59] |
L. Liu, X. Ren, J. H. Xie, B. Cheng, W. K. Liu, T. Y. An, H. W. Qin, and J. F. Hu, Magnetic switches via electric field in BN nanoribbons, Appl. Surf. Sci. 480, 300 (2019)
CrossRef
ADS
Google scholar
|
[60] |
J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
CrossRef
ADS
Google scholar
|
[61] |
P. W. Anderson, New approach to the theory of superexchange interactions, Phys. Rev. 115(1), 2 (1959)
CrossRef
ADS
Google scholar
|
[62] |
J. Kanamori, Crystal distortion in magnetic compounds, J. Appl. Phys. 31(5), S14 (1960)
CrossRef
ADS
Google scholar
|
[63] |
S. Yang, Y. Chen, and C. Jiang, Strain engineering of two‐dimensional materials: Methods, properties, and applications, InfoMat 3(4), 397 (2021)
CrossRef
ADS
Google scholar
|
[64] |
S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011)
CrossRef
ADS
Google scholar
|
[65] |
H. J. Conley, B. Wang, J. I. Ziegler, R. F. Jr Haglund, S. T. Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(8), 3626 (2013)
CrossRef
ADS
Google scholar
|
[66] |
D. Wang, R. Wu, and A. J. Freeman, First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model, Phys. Rev. B 47(22), 14932 (1993)
CrossRef
ADS
Google scholar
|
[67] |
M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B 71(3), 035105 (2005)
CrossRef
ADS
Google scholar
|
[68] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef
ADS
Google scholar
|
[69] |
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |