
Constructing a simple conductive-elastic layer on graphite surfaces for high-rate and long-life lithium-ion batteries
Jianye Wang, Yang Lyu, Hanxin Wei, Guozhi Ma, Baohui Chen, Ming Zhang
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044207.
Constructing a simple conductive-elastic layer on graphite surfaces for high-rate and long-life lithium-ion batteries
Graphite serves as a pivotal anode material in lithium-ion batteries. However, issues such as the co-embedding of solvent molecules during cycling and rapid capacity degradation at high rates have greatly hampered the practical application and development of graphite materials. Herein, this study proposes a straightforward, cost-effective, and environmentally benign strategy for modifying graphite anodes, with the dual objectives of enhancing high-rate capability and prolonging cycle life. Using water as the primary solvent and polyacrylonitrile as the coating material, a highly conductive, flexible, and strongly bonded polymer cladding layer is designed by combining solid−liquid coating and low-temperature heat treatment technologies. This innovative design not only effectively prevents the co-embedding of solvent molecules and mitigates the volume change of graphite particles during extended cycling, but also successfully constructs a dense and efficient electron transport network on the graphite surface. Leveraging the stability advantages brought by the high electron cloud overlap of C=N bonds (comprising σ bonds and π bonds), the conductivity and structural stability of the material are enhanced. This ultimately results in the successful synthesis of the G@C-PAN core−shell material, which exhibits high-rate performance and exceptional long-cycling stability. The results indicate that the material retains a high specific capacity of 328.12 mAh·g−1 with 96.18% capacity retention after 250 cycles at 0.5C. Furthermore, it exhibits an impressive specific capacity retention of 97.20% after 500 cycles at 2C. This study presents a sustainable, economically viable, and scalable approach for commercializing high-performance graphite-based lithium-ion batteries.
lithium-ion battery / graphite anode / polyacrylonitrile / cyclization / carbon coating / long-life
[1] |
F. M. N. U. Khan, M. G. Rasul, A. S. M. Sayem, and N. K. Mandal, Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review, J. Energy Storage 71, 108033 (2023)
CrossRef
ADS
Google scholar
|
[2] |
T. Y. Xu, H. W. Feng, W. Liu, Y. Wang, and H. H. Zheng, Opportunities and challenges of high-entropy materials in lithium-ion batteries, Rare Met. 43(10), 4884 (2024)
CrossRef
ADS
Google scholar
|
[3] |
W. Yan, Z. Chen, S. Ma, S. Chen, Y. Lu, M. Wang, L. Chen, Q. Huang, B. Wang, Y. Su, J. Wang, N. Li, and F. Wu, Unraveling the relationship between the mineralogical characteristics and lithium storage performance of natural graphite anode materials, Carbon 227, 119270 (2024)
CrossRef
ADS
Google scholar
|
[4] |
Y. Yu, J. Xu, K. Duanmu, V. Shutthanandan, S. Wi, Z. Yang, Y. Liu, X. Lyu, K. Qian, M. Agarwal, Z. Zhang, Y. Zhang, T. Li, C. Liu, V. Murugesan, and J. Xie, Stabilizing graphite anode in electrolytes with nanoscale anion networking for high-rate lithium storage, ACS Energy Lett. 9(10), 5002 (2024)
CrossRef
ADS
Google scholar
|
[5] |
Y. Xiong, Y. Liu, L. Chen, S. Zhang, X. Zhu, T. Shen, D. Ren, X. He, J. Qiu, L. Wang, Q. Hu, and H. Zhang, New insight on graphite anode degradation induced by Li-plating, Energy Environ. Mater. 5(3), 872 (2022)
CrossRef
ADS
Google scholar
|
[6] |
D. Wu and Z. Zhou, Recent progress of computational investigation on anode materials in Li ion batteries, Front. Phys. (Beijing) 6(2), 197 (2011)
CrossRef
ADS
Google scholar
|
[7] |
H. Gong, H. Xiao, L. Ye, and X. Ou, High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method, Waste Manag. 171, 292 (2023)
CrossRef
ADS
Google scholar
|
[8] |
J. H. Shim and S. Lee, Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries, J. Power Sources 324, 475 (2016)
CrossRef
ADS
Google scholar
|
[9] |
G. Wang, A. Mijailovic, J. Yang, J. Xiong, S. E. Beasley, K. Mathew, B. Zhou, W. Lu, B. W. Sheldon, and Q. Wu, Particle size effect of graphite anodes on performance of fast charging Li-ion batteries, J. Mater. Chem. A 11(40), 21793 (2023)
CrossRef
ADS
Google scholar
|
[10] |
J. Huang, J. Zeng, K. Zhu, R. Zhang, and J. Liu, High-performance aqueous zinc–manganese battery with reversible Mn 2+/Mn4+ double redox achieved by carbon coated MnOx nanoparticles, Nano-Micro Lett. 12(1), 110 (2020)
CrossRef
ADS
Google scholar
|
[11] |
S. Luo, F. Liu, W. Tianxu, Y. Liu, C. Zhang, C. Bie, M. Liu, P. K. Chu, K. Huo, and B. Gao, Regeneration of spent graphite via graphite-like turbostratic carbon coating for advanced Li ion battery anode, Energy Storage Mater. 73, 103833 (2024)
CrossRef
ADS
Google scholar
|
[12] |
Y. Sheng, X. Yue, W. Hao, Y. Dong, Y. Liu, and Z. Liang, Balancing the ion/electron transport of graphite anodes by a La-doped TiNb2O7 functional coating for fast-charging Li-ion batteries, Nano Lett. 24(12), 3694 (2024)
CrossRef
ADS
Google scholar
|
[13] |
S. Huang, L. Z. Cheong, D. Wang, and C. Shen, Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces 9(28), 23672 (2017)
CrossRef
ADS
Google scholar
|
[14] |
S. Huang, Q. Fan, X. Chen, Y. Wu, L. Liu, Z. Yu, and J. Xu, From graphite of used lithium-ion batteries to holey graphite coated by carbon with enhanced lithium storage capability, J. Colloid Interface Sci. 676, 197 (2024)
CrossRef
ADS
Google scholar
|
[15] |
Q. Sun,G. Hu,Z. Peng,Y. Cao,F. Zhu, Y. Zhang,H. Gao,K. Du, Achieving a bifunctional conformal coating on nickel-rich cathode LiNi0. 8Co0. 1Mn0. 1O2 with half-cyclized polyacrylonitrile, Electrochim. Acta 386, 138440 (2021)
|
[16] |
Y. Gao, J. Zhang, Y. Chen, and C. Wang, Improvement of the electrochemical performance of spent graphite by asphalt coating, Surf. Interfaces 24, 101089 (2021)
CrossRef
ADS
Google scholar
|
[17] |
Y. Shao, J. Xu, A. Amardeep, Y. Xia, X. Meng, J. Liu, and S. Liao, Lithium-ion conductive coatings for nickel-rich cathodes for lithium-ion batteries, Small Methods 8(12), 2400256 (2024)
CrossRef
ADS
Google scholar
|
[18] |
Y. Yu, C. Yang, Y. Jiang, J. Zhu, Y. Zhao, S. Liang, K. Wang, Y. Zhou, Y. Liu, J. Zhang, and M. Jiang, Sponge-like porous-conductive polymer coating for ultrastable silicon anodes in lithium-ion batteries, Small 19(47), 2303779 (2023)
CrossRef
ADS
Google scholar
|
[19] |
J. Ma, Z. Zheng, Y. Tang, H. Nagashima, and T. Miyoshi, Chemical reactions in poly(acrylonitrile-co-itaconic acid) during stabilization as revealed by solid-state NMR spectroscopy and 13C isotope labeling, Carbon 215, 118432 (2023)
CrossRef
ADS
Google scholar
|
[20] |
T. T. B. Tran, E. J. Park, H. I. Kim, H. J. Jang, and J. T. Son, Solvent-free dry cyclized polyacrylonitrile-coated LiNi0.87Co0.13O2 cathode for improving the electrochemical performance of Li-ion batteries, Mater. Chem. Phys. 290, 126590 (2022)
CrossRef
ADS
Google scholar
|
[21] |
F. Wu, W. Li, L. Chen, J. Wang, W. Bao, Y. Lu, J. Tan, S. Chen, R. Chen, and Y. Su, Simultaneously fabricating homogeneous nanostructured ionic and electronic pathways for layered lithium-rich oxides, J. Power Sources 402, 499 (2018)
CrossRef
ADS
Google scholar
|
[22] |
S. Weng, S. Wu, Z. Liu, G. Yang, X. Liu, X. Zhang, C. Zhang, Q. Liu, Y. Huang, Y. Li, M. N. Ateş, D. Su, L. Gu, H. Li, L. Chen, R. Xiao, Z. Wang, and X. Wang, Localized-domains staging structure and evolution in lithiated graphite, Carbon Energy 5(1), e224 (2023)
CrossRef
ADS
Google scholar
|
[23] |
Y. B. Cao, X. Y. Qi, K. H. Hu, Y. Wang, Z. Gan, Y. Li, G. Hu, Z. Peng, and K. Du, Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries, ACS Appl. Mater. Interfaces 10(21), 18270 (2018)
CrossRef
ADS
Google scholar
|
[24] |
T. Wang, W. Wang, D. Zhu, L. Huang, and Y. Chen, Improvement of the overall performances of LiMn2O4 via surface-modification by polypyrrole, Mater. Res. Bull. 71, 91 (2015)
CrossRef
ADS
Google scholar
|
[25] |
Y. Wang, L. Ren, Y. Liu, X. Liu, K. Huang, X. Wei, J. Li, X. Qi, and J. Zhong, Carbon matrix/SiNWs heterogeneous block as improved reversible anodes material for lithium ion batteries, J. Energy Chem. 23(1), 105 (2014)
CrossRef
ADS
Google scholar
|
[26] |
P. Du, X. Fan, B. Zhang, L. Cao, J. Ren, X. Ou, X. Guo, and Q. Liu, The lithiophobic-to-lithiophilic transition on the graphite towards ultrafast-charging and long-cycling lithium-ion batteries, Energy Storage Mater. 50, 648 (2022)
CrossRef
ADS
Google scholar
|
[27] |
Y. Huang, J. Xia, G. Hu, Y. Cao, Z. Peng, J. Fan, Y. Tao, T. Li, Z. Zhang, Z. Xue, and K. Du, Conductive cyclized polyacrylonitrile coated LiNi0.6Co0.2Mn0.2O2 cathode with the enhanced electrochemical performance for Li-ion batteries, Electrochim. Acta 332, 135505 (2020)
CrossRef
ADS
Google scholar
|
[28] |
X. Hu, H. Jiang, Q. Hou, M. Yu, X. Jiang, G. He, and X. Li, Scalable SPAN membrane cathode with high conductivity and hierarchically porous framework for enhanced ion transfer and cycling stability in Li–S batteries, ACS Mater. Lett. 5(8), 2047 (2023)
CrossRef
ADS
Google scholar
|
[29] |
D. Wang, H. Dong, H. Zhang, Y. Zhang, Y. Xu, C. Zhao, Y. Sun, and N. Zhou, Enabling a high performance of mesoporous α-Fe2O3 anodes by building a conformal coating of cyclized-PAN network, ACS Appl. Mater. Interfaces 8(30), 19524 (2016)
CrossRef
ADS
Google scholar
|
[30] |
J. Wang, Q. Yuan, Z. Ren, C. Sun, J. Zhang, R. Wang, M. Qian, Q. Shi, R. Shao, D. Mu, Y. Su, J. Xie, F. Wu, and G. Tan, Thermochemical cyclization constructs bridged dual-coating of Ni-rich layered oxide cathodes for high-energy Li-ion batteries, Nano Lett. 22(13), 5221 (2022)
CrossRef
ADS
Google scholar
|
[31] |
B. Ke, S. Cheng, C. Zhang, W. Li, J. Zhang, R. Deng, J. Lin, Q. Xie, B. Qu, L. Qiao, D. L. Peng, and X. Wang, Low-temperature flexible integration of all-solid-state thin-film lithium batteries enabled by spin-coating electrode architecture, Adv. Energy Mater. 14(12), 2303757 (2024)
CrossRef
ADS
Google scholar
|
[32] |
W. Qu, Y. Yuan, C. Wen, J. Zhu, X. Liang, S. Chen, Z. Li, G. Cao, and M. Zhang, Ultra-long life and high rate performance zinc-iodine batteries simultaneously enabled by a low-spin electrode, Energy Storage Mater. 75, 103993 (2025)
CrossRef
ADS
Google scholar
|
[33] |
M. S. Song, G. Chang, D. W. Jung, M. S. Kwon, P. Li, J. H. Ku, J. M. Choi, K. Zhang, G. R. Yi, Y. Cui, and J. H. Park, Strategy for boosting Li-ion current in silicon nanoparticles, ACS Energy Lett. 3(9), 2252 (2018)
CrossRef
ADS
Google scholar
|
[34] |
W. Qu, J. Zhu, G. Cao, S. Chen, Y. Tan, B. Chen, and M. Zhang, Ni single-atom bual catalytic electrodes for long life and high energy efficiency zinc-iodine batteries, Small 20(26), 2310475 (2024)
CrossRef
ADS
Google scholar
|
[35] |
L. Wang, Y. Jiang, S. Y. Li, X. H. Chen, F. S. Xi, X. H. Wan, W. H. Ma, and R. Deng, Scalable synthesis of N-doped Si/G@voids@C with porous structures for high-performance anode of lithium-ion batteries, Rare Met. 42(12), 4091 (2023)
CrossRef
ADS
Google scholar
|
[36] |
W. Qu, Y. Cai, B. Chen, and M. Zhang, Heterointerface engineering-induced oxygen defects for the manganese dissolution inhibition in aqueous zinc ion batteries, Energy Environ. Mater. 7(3), e12645 (2024)
CrossRef
ADS
Google scholar
|
[37] |
W. Li, L. Deng, J. Cao, B. Ke, X. Wang, S. Ni, S. Cheng, and B. Lu, Current-adaptive Li-ion storage mechanism in high-rate conversion-alloying metal chalcogenides, Adv. Funct. Mater. 34(44), 2407246 (2024)
CrossRef
ADS
Google scholar
|
[38] |
W. Chen, H. Qu, R. Shi, J. Wang, H. Ji, Z. Zhuang, J. Ma, D. Tang, J. Li, J. Tang, G. Ji, X. Xiao, Y. Zhu, and G. Zhou, Upcycling spent graphite into fast-charging anode materials through interface regulation, ACS Energy Lett. 9(7), 3505 (2024)
CrossRef
ADS
Google scholar
|
[39] |
B. Ke, C. Zhang, S. Cheng, W. Li, R. Deng, H. Zhang, J. Lin, Q. Xie, B. Qu, D. L. Peng, and X. Wang, Tape-casting electrode architecture permits low-temperature manufacturing of all-solid-state thin-film microbatteries, Interdiscip. Mater. 3(4), 621 (2024)
CrossRef
ADS
Google scholar
|
[40] |
W. Cai, C. Yan, Y. X. Yao, L. Xu, R. Xu, L. L. Jiang, J. Q. Huang, and Q. Zhang, Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes, Small Struct. 1(1), 2000001 (2020)
CrossRef
ADS
Google scholar
|
[41] |
J. C. Abrego-Martinez, Y. Wang, V. Vanpeene, and L. Roué, From waste graphite fines to revalorized anode material for Li-ion batteries, Carbon 209, 118004 (2023)
CrossRef
ADS
Google scholar
|
[42] |
Y. Huang, C. Wang, H. Lv, Y. Xie, S. Zhou, Y. Ye, E. Zhou, T. Zhu, H. Xie, W. Jiang, X. Wu, X. Kong, H. Jin, and H. Ji, Bifunctional interphase promotes Li+ de‐solvation and transportation enabling fast‐charging graphite anode at low temperature, Adv. Mater. 36(13), 2308675 (2024)
CrossRef
ADS
Google scholar
|
[43] |
S. Tu, B. Zhang, Y. Zhang, Z. Chen, X. Wang, R. Zhan, Y. Ou, W. Wang, X. Liu, X. Duan, L. Wang, and Y. Sun, Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase, Nat. Energy 8(12), 1365 (2023)
CrossRef
ADS
Google scholar
|
[44] |
M. Niu,L. Dong,J. Yue,Y. Li,Y. Dong, S. Cheng,S. Lv,Y. H. Zhu,Z. Lei,J. Y. Liang, S. Xin,C. Yang,Y. G. Guo, A fast-charge graphite anode with a Li-ion-conductive, electron/solvent-repelling interface, Angew. Chem. Int. Ed. 63(21), e202318663 (2024)
|
/
〈 |
|
〉 |