Constructing a simple conductive-elastic layer on graphite surfaces for high-rate and long-life lithium-ion batteries

Jianye Wang, Yang Lyu, Hanxin Wei, Guozhi Ma, Baohui Chen, Ming Zhang

Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044207.

PDF(5457 KB)
PDF(5457 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044207. DOI: 10.15302/frontphys.2025.044207
RESEARCH ARTICLE

Constructing a simple conductive-elastic layer on graphite surfaces for high-rate and long-life lithium-ion batteries

Author information +
History +

Abstract

Graphite serves as a pivotal anode material in lithium-ion batteries. However, issues such as the co-embedding of solvent molecules during cycling and rapid capacity degradation at high rates have greatly hampered the practical application and development of graphite materials. Herein, this study proposes a straightforward, cost-effective, and environmentally benign strategy for modifying graphite anodes, with the dual objectives of enhancing high-rate capability and prolonging cycle life. Using water as the primary solvent and polyacrylonitrile as the coating material, a highly conductive, flexible, and strongly bonded polymer cladding layer is designed by combining solid−liquid coating and low-temperature heat treatment technologies. This innovative design not only effectively prevents the co-embedding of solvent molecules and mitigates the volume change of graphite particles during extended cycling, but also successfully constructs a dense and efficient electron transport network on the graphite surface. Leveraging the stability advantages brought by the high electron cloud overlap of C=N bonds (comprising σ bonds and π bonds), the conductivity and structural stability of the material are enhanced. This ultimately results in the successful synthesis of the G@C-PAN core−shell material, which exhibits high-rate performance and exceptional long-cycling stability. The results indicate that the material retains a high specific capacity of 328.12 mAh·g−1 with 96.18% capacity retention after 250 cycles at 0.5C. Furthermore, it exhibits an impressive specific capacity retention of 97.20% after 500 cycles at 2C. This study presents a sustainable, economically viable, and scalable approach for commercializing high-performance graphite-based lithium-ion batteries.

Graphical abstract

Keywords

lithium-ion battery / graphite anode / polyacrylonitrile / cyclization / carbon coating / long-life

Cite this article

Download citation ▾
Jianye Wang, Yang Lyu, Hanxin Wei, Guozhi Ma, Baohui Chen, Ming Zhang. Constructing a simple conductive-elastic layer on graphite surfaces for high-rate and long-life lithium-ion batteries. Front. Phys., 2025, 20(4): 044207 https://doi.org/10.15302/frontphys.2025.044207

References

[1]
F. M. N. U. Khan, M. G. Rasul, A. S. M. Sayem, and N. K. Mandal, Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review, J. Energy Storage 71, 108033 (2023)
CrossRef ADS Google scholar
[2]
T. Y. Xu, H. W. Feng, W. Liu, Y. Wang, and H. H. Zheng, Opportunities and challenges of high-entropy materials in lithium-ion batteries, Rare Met. 43(10), 4884 (2024)
CrossRef ADS Google scholar
[3]
W. Yan, Z. Chen, S. Ma, S. Chen, Y. Lu, M. Wang, L. Chen, Q. Huang, B. Wang, Y. Su, J. Wang, N. Li, and F. Wu, Unraveling the relationship between the mineralogical characteristics and lithium storage performance of natural graphite anode materials, Carbon 227, 119270 (2024)
CrossRef ADS Google scholar
[4]
Y. Yu, J. Xu, K. Duanmu, V. Shutthanandan, S. Wi, Z. Yang, Y. Liu, X. Lyu, K. Qian, M. Agarwal, Z. Zhang, Y. Zhang, T. Li, C. Liu, V. Murugesan, and J. Xie, Stabilizing graphite anode in electrolytes with nanoscale anion networking for high-rate lithium storage, ACS Energy Lett. 9(10), 5002 (2024)
CrossRef ADS Google scholar
[5]
Y. Xiong, Y. Liu, L. Chen, S. Zhang, X. Zhu, T. Shen, D. Ren, X. He, J. Qiu, L. Wang, Q. Hu, and H. Zhang, New insight on graphite anode degradation induced by Li-plating, Energy Environ. Mater. 5(3), 872 (2022)
CrossRef ADS Google scholar
[6]
D. Wu and Z. Zhou, Recent progress of computational investigation on anode materials in Li ion batteries, Front. Phys. (Beijing) 6(2), 197 (2011)
CrossRef ADS Google scholar
[7]
H. Gong, H. Xiao, L. Ye, and X. Ou, High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method, Waste Manag. 171, 292 (2023)
CrossRef ADS Google scholar
[8]
J. H. Shim and S. Lee, Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries, J. Power Sources 324, 475 (2016)
CrossRef ADS Google scholar
[9]
G. Wang, A. Mijailovic, J. Yang, J. Xiong, S. E. Beasley, K. Mathew, B. Zhou, W. Lu, B. W. Sheldon, and Q. Wu, Particle size effect of graphite anodes on performance of fast charging Li-ion batteries, J. Mater. Chem. A 11(40), 21793 (2023)
CrossRef ADS Google scholar
[10]
J. Huang, J. Zeng, K. Zhu, R. Zhang, and J. Liu, High-performance aqueous zinc–manganese battery with reversible Mn 2+/Mn4+ double redox achieved by carbon coated MnOx nanoparticles, Nano-Micro Lett. 12(1), 110 (2020)
CrossRef ADS Google scholar
[11]
S. Luo, F. Liu, W. Tianxu, Y. Liu, C. Zhang, C. Bie, M. Liu, P. K. Chu, K. Huo, and B. Gao, Regeneration of spent graphite via graphite-like turbostratic carbon coating for advanced Li ion battery anode, Energy Storage Mater. 73, 103833 (2024)
CrossRef ADS Google scholar
[12]
Y. Sheng, X. Yue, W. Hao, Y. Dong, Y. Liu, and Z. Liang, Balancing the ion/electron transport of graphite anodes by a La-doped TiNb2O7 functional coating for fast-charging Li-ion batteries, Nano Lett. 24(12), 3694 (2024)
CrossRef ADS Google scholar
[13]
S. Huang, L. Z. Cheong, D. Wang, and C. Shen, Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces 9(28), 23672 (2017)
CrossRef ADS Google scholar
[14]
S. Huang, Q. Fan, X. Chen, Y. Wu, L. Liu, Z. Yu, and J. Xu, From graphite of used lithium-ion batteries to holey graphite coated by carbon with enhanced lithium storage capability, J. Colloid Interface Sci. 676, 197 (2024)
CrossRef ADS Google scholar
[15]
Q. Sun,G. Hu,Z. Peng,Y. Cao,F. Zhu, Y. Zhang,H. Gao,K. Du, Achieving a bifunctional conformal coating on nickel-rich cathode LiNi0. 8Co0. 1Mn0. 1O2 with half-cyclized polyacrylonitrile, Electrochim. Acta 386, 138440 (2021)
[16]
Y. Gao, J. Zhang, Y. Chen, and C. Wang, Improvement of the electrochemical performance of spent graphite by asphalt coating, Surf. Interfaces 24, 101089 (2021)
CrossRef ADS Google scholar
[17]
Y. Shao, J. Xu, A. Amardeep, Y. Xia, X. Meng, J. Liu, and S. Liao, Lithium-ion conductive coatings for nickel-rich cathodes for lithium-ion batteries, Small Methods 8(12), 2400256 (2024)
CrossRef ADS Google scholar
[18]
Y. Yu, C. Yang, Y. Jiang, J. Zhu, Y. Zhao, S. Liang, K. Wang, Y. Zhou, Y. Liu, J. Zhang, and M. Jiang, Sponge-like porous-conductive polymer coating for ultrastable silicon anodes in lithium-ion batteries, Small 19(47), 2303779 (2023)
CrossRef ADS Google scholar
[19]
J. Ma, Z. Zheng, Y. Tang, H. Nagashima, and T. Miyoshi, Chemical reactions in poly(acrylonitrile-co-itaconic acid) during stabilization as revealed by solid-state NMR spectroscopy and 13C isotope labeling, Carbon 215, 118432 (2023)
CrossRef ADS Google scholar
[20]
T. T. B. Tran, E. J. Park, H. I. Kim, H. J. Jang, and J. T. Son, Solvent-free dry cyclized polyacrylonitrile-coated LiNi0.87Co0.13O2 cathode for improving the electrochemical performance of Li-ion batteries, Mater. Chem. Phys. 290, 126590 (2022)
CrossRef ADS Google scholar
[21]
F. Wu, W. Li, L. Chen, J. Wang, W. Bao, Y. Lu, J. Tan, S. Chen, R. Chen, and Y. Su, Simultaneously fabricating homogeneous nanostructured ionic and electronic pathways for layered lithium-rich oxides, J. Power Sources 402, 499 (2018)
CrossRef ADS Google scholar
[22]
S. Weng, S. Wu, Z. Liu, G. Yang, X. Liu, X. Zhang, C. Zhang, Q. Liu, Y. Huang, Y. Li, M. N. Ateş, D. Su, L. Gu, H. Li, L. Chen, R. Xiao, Z. Wang, and X. Wang, Localized-domains staging structure and evolution in lithiated graphite, Carbon Energy 5(1), e224 (2023)
CrossRef ADS Google scholar
[23]
Y. B. Cao, X. Y. Qi, K. H. Hu, Y. Wang, Z. Gan, Y. Li, G. Hu, Z. Peng, and K. Du, Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries, ACS Appl. Mater. Interfaces 10(21), 18270 (2018)
CrossRef ADS Google scholar
[24]
T. Wang, W. Wang, D. Zhu, L. Huang, and Y. Chen, Improvement of the overall performances of LiMn2O4 via surface-modification by polypyrrole, Mater. Res. Bull. 71, 91 (2015)
CrossRef ADS Google scholar
[25]
Y. Wang, L. Ren, Y. Liu, X. Liu, K. Huang, X. Wei, J. Li, X. Qi, and J. Zhong, Carbon matrix/SiNWs heterogeneous block as improved reversible anodes material for lithium ion batteries, J. Energy Chem. 23(1), 105 (2014)
CrossRef ADS Google scholar
[26]
P. Du, X. Fan, B. Zhang, L. Cao, J. Ren, X. Ou, X. Guo, and Q. Liu, The lithiophobic-to-lithiophilic transition on the graphite towards ultrafast-charging and long-cycling lithium-ion batteries, Energy Storage Mater. 50, 648 (2022)
CrossRef ADS Google scholar
[27]
Y. Huang, J. Xia, G. Hu, Y. Cao, Z. Peng, J. Fan, Y. Tao, T. Li, Z. Zhang, Z. Xue, and K. Du, Conductive cyclized polyacrylonitrile coated LiNi0.6Co0.2Mn0.2O2 cathode with the enhanced electrochemical performance for Li-ion batteries, Electrochim. Acta 332, 135505 (2020)
CrossRef ADS Google scholar
[28]
X. Hu, H. Jiang, Q. Hou, M. Yu, X. Jiang, G. He, and X. Li, Scalable SPAN membrane cathode with high conductivity and hierarchically porous framework for enhanced ion transfer and cycling stability in Li–S batteries, ACS Mater. Lett. 5(8), 2047 (2023)
CrossRef ADS Google scholar
[29]
D. Wang, H. Dong, H. Zhang, Y. Zhang, Y. Xu, C. Zhao, Y. Sun, and N. Zhou, Enabling a high performance of mesoporous α-Fe2O3 anodes by building a conformal coating of cyclized-PAN network, ACS Appl. Mater. Interfaces 8(30), 19524 (2016)
CrossRef ADS Google scholar
[30]
J. Wang, Q. Yuan, Z. Ren, C. Sun, J. Zhang, R. Wang, M. Qian, Q. Shi, R. Shao, D. Mu, Y. Su, J. Xie, F. Wu, and G. Tan, Thermochemical cyclization constructs bridged dual-coating of Ni-rich layered oxide cathodes for high-energy Li-ion batteries, Nano Lett. 22(13), 5221 (2022)
CrossRef ADS Google scholar
[31]
B. Ke, S. Cheng, C. Zhang, W. Li, J. Zhang, R. Deng, J. Lin, Q. Xie, B. Qu, L. Qiao, D. L. Peng, and X. Wang, Low-temperature flexible integration of all-solid-state thin-film lithium batteries enabled by spin-coating electrode architecture, Adv. Energy Mater. 14(12), 2303757 (2024)
CrossRef ADS Google scholar
[32]
W. Qu, Y. Yuan, C. Wen, J. Zhu, X. Liang, S. Chen, Z. Li, G. Cao, and M. Zhang, Ultra-long life and high rate performance zinc-iodine batteries simultaneously enabled by a low-spin electrode, Energy Storage Mater. 75, 103993 (2025)
CrossRef ADS Google scholar
[33]
M. S. Song, G. Chang, D. W. Jung, M. S. Kwon, P. Li, J. H. Ku, J. M. Choi, K. Zhang, G. R. Yi, Y. Cui, and J. H. Park, Strategy for boosting Li-ion current in silicon nanoparticles, ACS Energy Lett. 3(9), 2252 (2018)
CrossRef ADS Google scholar
[34]
W. Qu, J. Zhu, G. Cao, S. Chen, Y. Tan, B. Chen, and M. Zhang, Ni single-atom bual catalytic electrodes for long life and high energy efficiency zinc-iodine batteries, Small 20(26), 2310475 (2024)
CrossRef ADS Google scholar
[35]
L. Wang, Y. Jiang, S. Y. Li, X. H. Chen, F. S. Xi, X. H. Wan, W. H. Ma, and R. Deng, Scalable synthesis of N-doped Si/G@voids@C with porous structures for high-performance anode of lithium-ion batteries, Rare Met. 42(12), 4091 (2023)
CrossRef ADS Google scholar
[36]
W. Qu, Y. Cai, B. Chen, and M. Zhang, Heterointerface engineering-induced oxygen defects for the manganese dissolution inhibition in aqueous zinc ion batteries, Energy Environ. Mater. 7(3), e12645 (2024)
CrossRef ADS Google scholar
[37]
W. Li, L. Deng, J. Cao, B. Ke, X. Wang, S. Ni, S. Cheng, and B. Lu, Current-adaptive Li-ion storage mechanism in high-rate conversion-alloying metal chalcogenides, Adv. Funct. Mater. 34(44), 2407246 (2024)
CrossRef ADS Google scholar
[38]
W. Chen, H. Qu, R. Shi, J. Wang, H. Ji, Z. Zhuang, J. Ma, D. Tang, J. Li, J. Tang, G. Ji, X. Xiao, Y. Zhu, and G. Zhou, Upcycling spent graphite into fast-charging anode materials through interface regulation, ACS Energy Lett. 9(7), 3505 (2024)
CrossRef ADS Google scholar
[39]
B. Ke, C. Zhang, S. Cheng, W. Li, R. Deng, H. Zhang, J. Lin, Q. Xie, B. Qu, D. L. Peng, and X. Wang, Tape-casting electrode architecture permits low-temperature manufacturing of all-solid-state thin-film microbatteries, Interdiscip. Mater. 3(4), 621 (2024)
CrossRef ADS Google scholar
[40]
W. Cai, C. Yan, Y. X. Yao, L. Xu, R. Xu, L. L. Jiang, J. Q. Huang, and Q. Zhang, Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes, Small Struct. 1(1), 2000001 (2020)
CrossRef ADS Google scholar
[41]
J. C. Abrego-Martinez, Y. Wang, V. Vanpeene, and L. Roué, From waste graphite fines to revalorized anode material for Li-ion batteries, Carbon 209, 118004 (2023)
CrossRef ADS Google scholar
[42]
Y. Huang, C. Wang, H. Lv, Y. Xie, S. Zhou, Y. Ye, E. Zhou, T. Zhu, H. Xie, W. Jiang, X. Wu, X. Kong, H. Jin, and H. Ji, Bifunctional interphase promotes Li+ de‐solvation and transportation enabling fast‐charging graphite anode at low temperature, Adv. Mater. 36(13), 2308675 (2024)
CrossRef ADS Google scholar
[43]
S. Tu, B. Zhang, Y. Zhang, Z. Chen, X. Wang, R. Zhan, Y. Ou, W. Wang, X. Liu, X. Duan, L. Wang, and Y. Sun, Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase, Nat. Energy 8(12), 1365 (2023)
CrossRef ADS Google scholar
[44]
M. Niu,L. Dong,J. Yue,Y. Li,Y. Dong, S. Cheng,S. Lv,Y. H. Zhu,Z. Lei,J. Y. Liang, S. Xin,C. Yang,Y. G. Guo, A fast-charge graphite anode with a Li-ion-conductive, electron/solvent-repelling interface, Angew. Chem. Int. Ed. 63(21), e202318663 (2024)

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Authors’ contributions

Design and conduct experiments, analyze data to draw conclusions, and write papers: J. Wang; Assist in data analysis, drawing, and paper revision: G. Ma; Comment on data analysis and article revisions: G. Ma, B. Chen, Y. Lyu, H. Wei; Conceive the framework of the paper, make revisions, and supervise the project: M. Zhang. All authors participated in the general discussion.

Availability of data and materials

Some data of supporting the study are presented in the Supplementary Materials. Other raw data that support the findings of this study are available from the corresponding author upon reasonable request.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.044207.

Acknowledgements

This work was supported by the Science and Technology Projects of the State Grid Corporation of China (No. 5500-202323102A-1-1-ZN), the Natural Science Foundation of Hunan Province (No. 2023JJ10005), the Key Project of Hunan Provincial Department of Education (Grant No. 23A0057), and Youth Support Project of Hunan Normal University (Grant No. 240649).

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary
PDF(5457 KB)

Accesses

Citations

Detail

Sections
Recommended

/