Realization of a non-Hermitian Haldane model in circuits

Rujiang Li, Wencai Wang, Xiangyu Kong, Bo Lv, Yongtao Jia, Huibin Tao, Pengfei Li, Ying Liu

Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044204.

PDF(11548 KB)
PDF(11548 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044204. DOI: 10.15302/frontphys.2025.044204
RESEARCH ARTICLE

Realization of a non-Hermitian Haldane model in circuits

Author information +
History +

Abstract

The Haldane model is the simplest yet most powerful topological lattice model exhibiting various phases, including the Dirac semimetal phase and the anomalous quantum Hall phase (also known as the Chern insulator). Although considered unlikely to be physically directly realizable in condensed matter systems, it has been experimentally demonstrated in other physical settings such as cold atoms, where Hermiticity is usually preserved. Extending this model to the non-Hermitian regime with energy non-conservation can significantly enrich topological phases that lack Hermitian counterparts; however, such exploration remains experimentally challenging due to the lack of suitable physical platforms. Here, based on electric circuits, we report the experimental realization of a genuine non-Hermitian Haldane model with asymmetric next-nearest-neighbor hopping. We observe two previously uncovered phases: a non-Hermitian Chern insulator and a non-Hermitian semimetal phase, both exhibiting boundary-dependent amplifying or dissipative chiral edge states. Our work paves the way for exploring non-Hermiticity-induced unconventional topological phases in the Haldane model.

Graphical abstract

Keywords

Haldane model / Chern insulator / non-Hermitian / topological circuit / semimetal

Cite this article

Download citation ▾
Rujiang Li, Wencai Wang, Xiangyu Kong, Bo Lv, Yongtao Jia, Huibin Tao, Pengfei Li, Ying Liu. Realization of a non-Hermitian Haldane model in circuits. Front. Phys., 2025, 20(4): 044204 https://doi.org/10.15302/frontphys.2025.044204

References

[1]
F. D. M. Haldane, Model for a quantum Hall effect with-out landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef ADS Google scholar
[2]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS arXiv Google scholar
[3]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS arXiv Google scholar
[4]
L. Lu, J. D. Joannopoulos, and M. Soljacic, Topological photonics, Nat. Photonics 8(11), 821 (2014)
CrossRef ADS arXiv Google scholar
[5]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef ADS arXiv Google scholar
[6]
A. B. Khanikaev and G. Shvets, Two-dimensional topological photonics, Nat. Photonics 11(12), 763 (2017)
CrossRef ADS Google scholar
[7]
Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Topological acoustics, Phys. Rev. Lett. 114(11), 114301 (2015)
CrossRef ADS arXiv Google scholar
[8]
G. Ma, M. Xiao, and C. T. Chan, Topological phases in acoustic and mechanical systems, Nat. Rev. Phys. 1(4), 281 (2019)
CrossRef ADS Google scholar
[9]
L. Lu, Topology on a breadboard, Nat. Phys. 14(9), 875 (2018)
CrossRef ADS Google scholar
[10]
H. Xue, Y. Yang, and B. Zhang, Topological valley photonics: Physics and device applications, Adv. Photon. Res. 2(8), 2100013 (2021)
CrossRef ADS Google scholar
[11]
M. Kim, Z. Jacob, and J. Rho, Recent advances in 2D, 3D and higher-order topological photonics, Light Sci. Appl. 9(1), 130 (2020)
CrossRef ADS Google scholar
[12]
H. Yang, L. Song, Y. Cao, and P. Yan, Circuit realization of topological physics, Phys. Rep. 1093, 1 (2024)
CrossRef ADS Google scholar
[13]
M. Segev and M. A. Bandres, Topological photonics: Where do we go from here?, Nanophotonics 10(1), 425 (2020)
CrossRef ADS Google scholar
[14]
X. C. Sun, C. He, X. P. Liu, M. H. Lu, S. N. Zhu, and Y. F. Chen, Two-dimensional topological photonic systems, Prog. Quantum Electron. 55, 52 (2017)
CrossRef ADS Google scholar
[15]
M. A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363(6422), eaar7709 (2019)
CrossRef ADS Google scholar
[16]
E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)
CrossRef ADS arXiv Google scholar
[17]
C. Coulais, R. Fleury, and J. van Wezel, Topology and broken Hermiticity, Nat. Phys. 17(1), 9 (2021)
CrossRef ADS Google scholar
[18]
Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, and S. Iwamoto, Active topological photonics, Nanophotonics 9(3), 547 (2020)
CrossRef ADS arXiv Google scholar
[19]
X. Ni, D. Smirnova, A. Poddubny, D. Leykam, Y. Chong, and A. B. Khanikaev, PT phase transitions of edge states at PT symmetric interfaces in non-Hermitian topological insulators, Phys. Rev. B 98(16), 165129 (2018)
CrossRef ADS arXiv Google scholar
[20]
P. Reséndiz-Vázquez, K. Tschernig, A. Perez-Leija, K. Busch, and R. J. León-Montiel, Topological protection in non-Hermitian Haldane honeycomb lattices, Phys. Rev. Res. 2(1), 013387 (2020)
CrossRef ADS arXiv Google scholar
[21]
M. Ezawa, Electric circuits for non-Hermitian Chern insulators, Phys. Rev. B 100(8), 081401 (2019)
CrossRef ADS arXiv Google scholar
[22]
M. Serra-Garcia, R. Susstrunk, and S. D. Huber, Observation of quadrupole transitions and edge mode topology in an LC circuit network, Phys. Rev. B 99(2), 020304 (2019)
CrossRef ADS arXiv Google scholar
[23]
J. Bao, D. Zou, W. Zhang, W. He, H. Sun, and X. Zhang, Topoelectrical circuit octupole insulator with topologically protected corner states, Phys. Rev. B 100(20), 201406 (2019)
CrossRef ADS arXiv Google scholar
[24]
S. Liu, S. Ma, Q. Zhang, L. Zhang, C. Yang, O. You, W. Gao, Y. Xiang, T. J. Cui, and S. Zhang, Octupole corner state in a three-dimensional topological circuit, Light Sci. Appl. 9(1), 145 (2020)
CrossRef ADS Google scholar
[25]
S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Topolectrical-circuit realization of topological corner modes, Nat. Phys. 14(9), 925 (2018)
CrossRef ADS arXiv Google scholar
[26]
J. Wu, X. Huang, J. Lu, Y. Wu, W. Deng, F. Li, and Z. Liu, Observation of corner states in second-order topological electric circuits, Phys. Rev. B 102(10), 104109 (2020)
CrossRef ADS Google scholar
[27]
W. Zhang, D. Zou, J. Bao, W. He, Q. Pei, H. Sun, and X. Zhang, Topolectrical-circuit realization of a four-dimensional hexadecapole insulator, Phys. Rev. B 102(10), 100102 (2020)
CrossRef ADS arXiv Google scholar
[28]
H. Yang, Z. X. Li, Y. Liu, Y. Cao, and P. Yan, Observation of symmetry-protected zero modes in topolectrical circuits, Phys. Rev. Res. 2(2), 022028 (2020)
CrossRef ADS arXiv Google scholar
[29]
Y. Hadad, J. C. Soric, A. B. Khanikaev, and A. Alù, Self-induced topological protection in nonlinear circuit arrays, Nat. Electron. 1(3), 178 (2018)
CrossRef ADS Google scholar
[30]
Y. Wang, L. J. Lang, C. H. Lee, B. Zhang, and Y. D. Chong, Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial, Nat. Commun. 10(1), 1102 (2019)
CrossRef ADS arXiv Google scholar
[31]
T. Kotwal, F. Moseley, A. Stegmaier, S. Imhof, H. Brand, T. Kießling, R. Thomale, H. Ronellenfitsch, and J. Dunkel, Active topolectrical circuits, Proc. Natl. Acad. Sci. USA 118(32), e2106411118 (2021)
CrossRef ADS arXiv Google scholar
[32]
Y. Wang, H. M. Price, B. Zhang, and Y. D. Chong, Circuit implementation of a four-dimensional topological insulator, Nat. Commun. 11(1), 2356 (2020)
CrossRef ADS arXiv Google scholar
[33]
T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, and R. Thomale, Generalized bulk−boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16(7), 747 (2020)
CrossRef ADS arXiv Google scholar
[34]
D. Zou, T. Chen, W. He, J. Bao, C. H. Lee, H. Sun, and X. Zhang, Observation of hybrid higher-order skin topological effect in non-Hermitian topolectrical circuits, Nat. Commun. 12(1), 7201 (2021)
CrossRef ADS arXiv Google scholar
[35]
H. Wang, J. Liu, T. Liu, and W. Ju, Observation of impurity-induced scale-free localization in a disordered non-Hermitian electrical circuit, Front. Phys. (Beijing) 20(1), 14203 (2025)
CrossRef ADS arXiv Google scholar
[36]
J. Tang, F. Ma, F. Li, H. Guo, and D. Zhou, Strongly nonlinear topological phases of cascaded topoelectrical circuits, Front. Phys. (Beijing) 18(3), 33311 (2023)
CrossRef ADS arXiv Google scholar
[37]
T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale, Chiral voltage propagation and calibration in a topolectrical Chern circuit, Phys. Rev. Lett. 122(24), 247702 (2019)
CrossRef ADS arXiv Google scholar
[38]
R. Haenel, T. Branch, and M. Franz, Chern insulators for electromagnetic waves in electrical circuit networks, Phys. Rev. B 99(23), 235110 (2019)
CrossRef ADS arXiv Google scholar
[39]
Y. Yang, D. Zhu, Z. Hang, and Y. Chong, Observation of antichiral edge states in a circuit lattice, Sci. China Phys. Mech. Astron. 64(5), 257011 (2021)
CrossRef ADS arXiv Google scholar
[40]
J. Ningyuan, C. Owens, A. Sommer, D. Schuster, and J. Simon, Time- and site-resolved dynamics in a topological circuit, Phys. Rev. X 5(2), 021031 (2015)
CrossRef ADS arXiv Google scholar
[41]
T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W. Molenkamp, and T. Kiessling, Band structure engineering and reconstruction in electric circuit networks, Phys. Rev. B 99(16), 161114 (2019)
CrossRef ADS arXiv Google scholar
[42]
G. G. Liu, P. Zhou, Y. Yang, H. Xue, X. Ren, X. Lin, H. Sun, L. Bi, Y. Chong, and B. Zhang, Observation of an unpaired photonic Dirac point, Nat. Commun. 11(1), 1873 (2020)
CrossRef ADS arXiv Google scholar
[43]
C. H. Lee, L. Li, and J. Gong, Hybrid higher-order skin topological modes in nonreciprocal systems, Phys. Rev. Lett. 123(1), 016805 (2019)
CrossRef ADS arXiv Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.044204.

Acknowledgements

The authors thank fruitful discussions with Baile Zhang and Yihao Yang. R.L., W.W., and X.K. were sponsored by the National Key Research and Development Program of China (Grant No. 2022YFA1404902), the National Natural Science Foundation of China (Grant No. 12104353), the Fundamental Research Funds for the Central Universities (Grant No. QTZX25086), and the Open Foundation of the State Key Laboratory of Modern Optical Instrumentation. B.L. was sponsored by the National Natural Science Foundation of China (Grant No. 61901133), the Fundamental Research Funds for the Central Universities (No. 3072024XX2504), the Forward Design Technology Special Fund Project of Harbin Engineering University (Nos. KYWZ220242504, KYW220240807, and KYWZ220240807). P.L. was sponsored by the National Natural Science Foundation of China (Grant No. 11805141) and Basic Research Program of Shanxi Province (No. 202203021222250). Y.L. was sponsored by the National Natural Science Foundation of China (Grant No. 62271366) and the 111 Project.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(11548 KB)

Accesses

Citations

Detail

Sections
Recommended

/