
Realization of a non-Hermitian Haldane model in circuits
Rujiang Li, Wencai Wang, Xiangyu Kong, Bo Lv, Yongtao Jia, Huibin Tao, Pengfei Li, Ying Liu
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044204.
Realization of a non-Hermitian Haldane model in circuits
The Haldane model is the simplest yet most powerful topological lattice model exhibiting various phases, including the Dirac semimetal phase and the anomalous quantum Hall phase (also known as the Chern insulator). Although considered unlikely to be physically directly realizable in condensed matter systems, it has been experimentally demonstrated in other physical settings such as cold atoms, where Hermiticity is usually preserved. Extending this model to the non-Hermitian regime with energy non-conservation can significantly enrich topological phases that lack Hermitian counterparts; however, such exploration remains experimentally challenging due to the lack of suitable physical platforms. Here, based on electric circuits, we report the experimental realization of a genuine non-Hermitian Haldane model with asymmetric next-nearest-neighbor hopping. We observe two previously uncovered phases: a non-Hermitian Chern insulator and a non-Hermitian semimetal phase, both exhibiting boundary-dependent amplifying or dissipative chiral edge states. Our work paves the way for exploring non-Hermiticity-induced unconventional topological phases in the Haldane model.
Haldane model / Chern insulator / non-Hermitian / topological circuit / semimetal
[1] |
F. D. M. Haldane, Model for a quantum Hall effect with-out landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef
ADS
Google scholar
|
[2] |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[3] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[4] |
L. Lu, J. D. Joannopoulos, and M. Soljacic, Topological photonics, Nat. Photonics 8(11), 821 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
A. B. Khanikaev and G. Shvets, Two-dimensional topological photonics, Nat. Photonics 11(12), 763 (2017)
CrossRef
ADS
Google scholar
|
[7] |
Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Topological acoustics, Phys. Rev. Lett. 114(11), 114301 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
G. Ma, M. Xiao, and C. T. Chan, Topological phases in acoustic and mechanical systems, Nat. Rev. Phys. 1(4), 281 (2019)
CrossRef
ADS
Google scholar
|
[9] |
L. Lu, Topology on a breadboard, Nat. Phys. 14(9), 875 (2018)
CrossRef
ADS
Google scholar
|
[10] |
H. Xue, Y. Yang, and B. Zhang, Topological valley photonics: Physics and device applications, Adv. Photon. Res. 2(8), 2100013 (2021)
CrossRef
ADS
Google scholar
|
[11] |
M. Kim, Z. Jacob, and J. Rho, Recent advances in 2D, 3D and higher-order topological photonics, Light Sci. Appl. 9(1), 130 (2020)
CrossRef
ADS
Google scholar
|
[12] |
H. Yang, L. Song, Y. Cao, and P. Yan, Circuit realization of topological physics, Phys. Rep. 1093, 1 (2024)
CrossRef
ADS
Google scholar
|
[13] |
M. Segev and M. A. Bandres, Topological photonics: Where do we go from here?, Nanophotonics 10(1), 425 (2020)
CrossRef
ADS
Google scholar
|
[14] |
X. C. Sun, C. He, X. P. Liu, M. H. Lu, S. N. Zhu, and Y. F. Chen, Two-dimensional topological photonic systems, Prog. Quantum Electron. 55, 52 (2017)
CrossRef
ADS
Google scholar
|
[15] |
M. A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363(6422), eaar7709 (2019)
CrossRef
ADS
Google scholar
|
[16] |
E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
C. Coulais, R. Fleury, and J. van Wezel, Topology and broken Hermiticity, Nat. Phys. 17(1), 9 (2021)
CrossRef
ADS
Google scholar
|
[18] |
Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, and S. Iwamoto, Active topological photonics, Nanophotonics 9(3), 547 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
X. Ni, D. Smirnova, A. Poddubny, D. Leykam, Y. Chong, and A. B. Khanikaev, PT phase transitions of edge states at PT symmetric interfaces in non-Hermitian topological insulators, Phys. Rev. B 98(16), 165129 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
P. Reséndiz-Vázquez, K. Tschernig, A. Perez-Leija, K. Busch, and R. J. León-Montiel, Topological protection in non-Hermitian Haldane honeycomb lattices, Phys. Rev. Res. 2(1), 013387 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
M. Ezawa, Electric circuits for non-Hermitian Chern insulators, Phys. Rev. B 100(8), 081401 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[22] |
M. Serra-Garcia, R. Susstrunk, and S. D. Huber, Observation of quadrupole transitions and edge mode topology in an LC circuit network, Phys. Rev. B 99(2), 020304 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[23] |
J. Bao, D. Zou, W. Zhang, W. He, H. Sun, and X. Zhang, Topoelectrical circuit octupole insulator with topologically protected corner states, Phys. Rev. B 100(20), 201406 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
S. Liu, S. Ma, Q. Zhang, L. Zhang, C. Yang, O. You, W. Gao, Y. Xiang, T. J. Cui, and S. Zhang, Octupole corner state in a three-dimensional topological circuit, Light Sci. Appl. 9(1), 145 (2020)
CrossRef
ADS
Google scholar
|
[25] |
S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Topolectrical-circuit realization of topological corner modes, Nat. Phys. 14(9), 925 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
J. Wu, X. Huang, J. Lu, Y. Wu, W. Deng, F. Li, and Z. Liu, Observation of corner states in second-order topological electric circuits, Phys. Rev. B 102(10), 104109 (2020)
CrossRef
ADS
Google scholar
|
[27] |
W. Zhang, D. Zou, J. Bao, W. He, Q. Pei, H. Sun, and X. Zhang, Topolectrical-circuit realization of a four-dimensional hexadecapole insulator, Phys. Rev. B 102(10), 100102 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[28] |
H. Yang, Z. X. Li, Y. Liu, Y. Cao, and P. Yan, Observation of symmetry-protected zero modes in topolectrical circuits, Phys. Rev. Res. 2(2), 022028 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
Y. Hadad, J. C. Soric, A. B. Khanikaev, and A. Alù, Self-induced topological protection in nonlinear circuit arrays, Nat. Electron. 1(3), 178 (2018)
CrossRef
ADS
Google scholar
|
[30] |
Y. Wang, L. J. Lang, C. H. Lee, B. Zhang, and Y. D. Chong, Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial, Nat. Commun. 10(1), 1102 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[31] |
T. Kotwal, F. Moseley, A. Stegmaier, S. Imhof, H. Brand, T. Kießling, R. Thomale, H. Ronellenfitsch, and J. Dunkel, Active topolectrical circuits, Proc. Natl. Acad. Sci. USA 118(32), e2106411118 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[32] |
Y. Wang, H. M. Price, B. Zhang, and Y. D. Chong, Circuit implementation of a four-dimensional topological insulator, Nat. Commun. 11(1), 2356 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[33] |
T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, and R. Thomale, Generalized bulk−boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16(7), 747 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
D. Zou, T. Chen, W. He, J. Bao, C. H. Lee, H. Sun, and X. Zhang, Observation of hybrid higher-order skin topological effect in non-Hermitian topolectrical circuits, Nat. Commun. 12(1), 7201 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[35] |
H. Wang, J. Liu, T. Liu, and W. Ju, Observation of impurity-induced scale-free localization in a disordered non-Hermitian electrical circuit, Front. Phys. (Beijing) 20(1), 14203 (2025)
CrossRef
ADS
arXiv
Google scholar
|
[36] |
J. Tang, F. Ma, F. Li, H. Guo, and D. Zhou, Strongly nonlinear topological phases of cascaded topoelectrical circuits, Front. Phys. (Beijing) 18(3), 33311 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[37] |
T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale, Chiral voltage propagation and calibration in a topolectrical Chern circuit, Phys. Rev. Lett. 122(24), 247702 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[38] |
R. Haenel, T. Branch, and M. Franz, Chern insulators for electromagnetic waves in electrical circuit networks, Phys. Rev. B 99(23), 235110 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[39] |
Y. Yang, D. Zhu, Z. Hang, and Y. Chong, Observation of antichiral edge states in a circuit lattice, Sci. China Phys. Mech. Astron. 64(5), 257011 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[40] |
J. Ningyuan, C. Owens, A. Sommer, D. Schuster, and J. Simon, Time- and site-resolved dynamics in a topological circuit, Phys. Rev. X 5(2), 021031 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[41] |
T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W. Molenkamp, and T. Kiessling, Band structure engineering and reconstruction in electric circuit networks, Phys. Rev. B 99(16), 161114 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[42] |
G. G. Liu, P. Zhou, Y. Yang, H. Xue, X. Ren, X. Lin, H. Sun, L. Bi, Y. Chong, and B. Zhang, Observation of an unpaired photonic Dirac point, Nat. Commun. 11(1), 1873 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
C. H. Lee, L. Li, and J. Gong, Hybrid higher-order skin topological modes in nonreciprocal systems, Phys. Rev. Lett. 123(1), 016805 (2019)
CrossRef
ADS
arXiv
Google scholar
|
/
〈 |
|
〉 |