
Holographic Einstein ring of charged phantom AdS black hole
Gang Chen, Ke-Jian He, Xiao-Xiong Zeng, Man-Jia Liang, Li-Fang Li, Pan Li, Peng Xu
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 035203.
Holographic Einstein ring of charged phantom AdS black hole
Within the framework of AdS/CFT correspondence, this paper studies the holographic shadow images of charged Phantom AdS black holes. Using a Gaussian oscillator source on the AdS boundary, the test waves generated by this source propagate through the black hole spacetime are detected by the response function on the other side of the boundary. The results show that the amplitude of the response function differs for different wave sources and gravitational parameters. From an optical system with a convex lens, we successfully constructed the shadow image of the black hole. When the wave source is located at the South Pole and the observation inclination is zero, a series of axially symmetric concentric circular patterns are always displayed on the screen. As the observation inclination increases, the brightest ring transforms into a ring with distorted brightness, Eventually collapsing to a bright spot. Additionally, the research finds that the shadow image depends not only on the black hole’s temperature and chemical potential but also on the frequency of the wave source. Based on the geometric optics, the incidence angle of the photon ring is also discussed, and finds that it Matches the angular distance of the Einstein ring obtained by the holographic framework, which validates the effectiveness of studying Einstein rings through AdS/CFT correspondence.
holographic Einstein ring / phantom AdS black hole / the shadow of black hole
[1] |
S. N. Zhang , W. Cui , and W. Chen , Black hole spin in X-ray binaries: Observational consequences, Astrophys. J. 482(2), L155 (1997)
CrossRef
ADS
Google scholar
|
[2] |
B. P. Abbott , et al. [LIGO Scientific , and Virgo] ,
CrossRef
ADS
arXiv
Google scholar
|
[3] |
A. Abbott,et al. [LIGO Scientific,Virgo] ,
|
[4] |
J. Liu,H. Zhang,A. W. Howard,Z. Bai,Y. Lu,
|
[5] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[6] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[7] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[8] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[9] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[10] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[11] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[12] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[13] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[14] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[15] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[16] |
K. Akiyama , et al. [Event Horizon Telescope Collaboration] ,
CrossRef
ADS
arXiv
Google scholar
|
[17] |
R. M. Wald, General Relativity, The University of Chicago Press, 1984
|
[18] |
Y. Nambu , Wave optics and image formation in gravitational lensing, J. Phys. Conf. Ser. 410, 012036 (2013)
CrossRef
ADS
Google scholar
|
[19] |
K. Hashimoto , S. Kinoshita , and K. Murata , Einstein rings in holography, Phys. Rev. Lett. 123(3), 031602 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
K. Hashimoto , S. Kinoshita , and K. Murata , Imaging black holes through the AdS/CFT correspondence, Phys. Rev. D 101(6), 066018 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
Y. X. Liu , Q. Chen , X. X. Zeng , H. B. Zhang , and W. L. Zhang , Holographic Einstein ring of a charged AdS black hole, J. High Energy Phys. 2022(10), 189 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[22] |
Y. Kaku , K. Murata , and J. Tsujimura , Observing black holes through superconductors, J. High Energy Phys. 2021, 138 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[23] |
X. Y. Hu , M. I. Aslam , R. Saleem , and X. X. Zeng , Dynamics of holographic images of scalar-tensorvector gravity-AdS black holes, Chin. Phys. C 48(9), 095108 (2024)
CrossRef
ADS
Google scholar
|
[24] |
X. Y. Hu , X. X. Zeng , L. F. Li , and P. Xu , Holographic Einstein rings of non-commutative black holes, Eur. Phys. J. C 84(2), 199 (2024)
CrossRef
ADS
Google scholar
|
[25] |
X. X. Zeng , K. J. He , J. Pu , G. P. Li , and Q. Q. Jiang , Holographic Einstein rings of a Gauss–Bonnet AdS black hole, Eur. Phys. J. C 83(10), 897 (2023)
CrossRef
ADS
Google scholar
|
[26] |
G. P. Li , K. J. He , X. Y. Hu , and Q. Q. Jiang , Holographic images of an AdS black hole within the framework of f(R) gravity theory, Front. Phys. (Beijing) 19(5), 54202 (2024)
CrossRef
ADS
Google scholar
|
[27] |
K. J. He , Y. W. Han , and G. P. Li , Holographic image features of Hayward−AdS black hole surrounded by quintessence dark energy, Phys. Dark Univ 44, 101468 (2024)
CrossRef
ADS
Google scholar
|
[28] |
X. Y. Hu , X. X. Zeng , L. F. Li , and P. Xu , Holographic study on Einstein ring for a charged black hole in conformal gravity, Results Phys. 61, 107707 (2024)
CrossRef
ADS
Google scholar
|
[29] |
G. P. Li , K. J. He , X. Y. Hu , and Q. Q. Jiang , Holographic images of an ads black hole within the framework of f(r) gravity theory, Front. Phys. (Beijing) 19(5), 54202 (2024)
CrossRef
ADS
Google scholar
|
[30] |
L. Shao , Imaging supermassive black hole shadows with a global very long baseline interferometry array, Front. Phys. (Beijing) 17(4), 4 (2022)
CrossRef
ADS
Google scholar
|
[31] |
Z. M. Xu , Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space, Front. Phys. (Beijing) 16(2), 7 (2021)
CrossRef
ADS
Google scholar
|
[32] |
J. Dunkley , E. Komatsu , M. R. Nolta , D. N. Spergel , D. Larson ,
CrossRef
ADS
arXiv
Google scholar
|
[33] |
S. Hannestad , Dark energy and dark matter from cosmological observations, Int. J. Mod. Phys. A 21(08−09), 1938 (2006)
CrossRef
ADS
Google scholar
|
[34] |
K. Komatsu , K. M. Smith , J. Dunkley , C. L. Bennett , B. Gold ,
CrossRef
ADS
arXiv
Google scholar
|
[35] |
P. Singh , M. Sami , and N. Dadhich , Cosmological dynamics of phantom field, Phys. Rev. D 68(2), 023522 (2003)
CrossRef
ADS
Google scholar
|
[36] |
G. W. Gibbons and D. A. Rasheed , Dyson pairs and zero mass black holes, Nucl. Phys. B 476(3), 515 (1996)
CrossRef
ADS
Google scholar
|
[37] |
M. Azreg-Ainou , G. Clement , J. C. Fabris , and M. E. Rodrigues , Phantom black holes and sigma models, Phys. Rev. D 83(12), 124001 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[38] |
M. Azreg-Ainou , Light paths of normal and phantom Einstein−Maxwell-dilaton black holes, Phys. Rev. D 87(2), 024012 (2013)
CrossRef
ADS
Google scholar
|
[39] |
G. N. Gyulchev and I. Z. Stefanov , Gravitational lensing by phantom black holes, Phys. Rev. D 87(6), 063005 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[40] |
D. F. Jardim , M. E. Rodrigues , and M. J. S. Houndjo , Thermodynamics of phantom Reissner−Nordstrom−AdS black hole, Eur. Phys. J. Plus 127(10), 123 (2012)
CrossRef
ADS
Google scholar
|
[41] |
J. X. Mo and S. Q. Lan , Phase transition and heat engine efficiency of phantom AdS black holes, Eur. Phys. J. C 78(8), 666 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[42] |
X. X. Zeng , X. Y. Hu , and L. F. Li , Effect of phantom dark energy on holographic thermalization, Chin. Phys. Lett. 34(1), 010401 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
M. U. Shahzad , S. Khalid , and A. Övgün , Motion of spinning particles around dynamic phantom AdS black holes, Eur. Phys. J. C 83(11), 1031 (2023)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |