Holographic Einstein ring of charged phantom AdS black hole

Gang Chen, Ke-Jian He, Xiao-Xiong Zeng, Man-Jia Liang, Li-Fang Li, Pan Li, Peng Xu

Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 035203.

PDF(4459 KB)
PDF(4459 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 035203. DOI: 10.15302/frontphys.2025.035203
RESEARCH ARTICLE

Holographic Einstein ring of charged phantom AdS black hole

Author information +
History +

Abstract

Within the framework of AdS/CFT correspondence, this paper studies the holographic shadow images of charged Phantom AdS black holes. Using a Gaussian oscillator source on the AdS boundary, the test waves generated by this source propagate through the black hole spacetime are detected by the response function on the other side of the boundary. The results show that the amplitude of the response function differs for different wave sources and gravitational parameters. From an optical system with a convex lens, we successfully constructed the shadow image of the black hole. When the wave source is located at the South Pole and the observation inclination is zero, a series of axially symmetric concentric circular patterns are always displayed on the screen. As the observation inclination increases, the brightest ring transforms into a ring with distorted brightness, Eventually collapsing to a bright spot. Additionally, the research finds that the shadow image depends not only on the black hole’s temperature and chemical potential but also on the frequency of the wave source. Based on the geometric optics, the incidence angle of the photon ring is also discussed, and finds that it Matches the angular distance of the Einstein ring obtained by the holographic framework, which validates the effectiveness of studying Einstein rings through AdS/CFT correspondence.

Graphical abstract

Keywords

holographic Einstein ring / phantom AdS black hole / the shadow of black hole

Cite this article

Download citation ▾
Gang Chen, Ke-Jian He, Xiao-Xiong Zeng, Man-Jia Liang, Li-Fang Li, Pan Li, Peng Xu. Holographic Einstein ring of charged phantom AdS black hole. Front. Phys., 2025, 20(3): 035203 https://doi.org/10.15302/frontphys.2025.035203

References

[1]
S. N. Zhang , W. Cui , and W. Chen , Black hole spin in X-ray binaries: Observational consequences, Astrophys. J. 482(2), L155 (1997)
CrossRef ADS Google scholar
[2]
B. P. Abbott , et al. [LIGO Scientific , and Virgo] , . Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016)
CrossRef ADS arXiv Google scholar
[3]
A. Abbott,et al. [LIGO Scientific,Virgo] , ., GW190521: A binary black hole merger with a total mass of 150M⊙, Phys. Rev. Lett. 125(10), 101102 (2020)
[4]
J. Liu,H. Zhang,A. W. Howard,Z. Bai,Y. Lu, ., A wide star-black-hole binary system from radial-velocity measurements, Nature 575(7784), 618 (2019)
[5]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First M87 event horizon telescope results. I. The shadow of the supermassive black hole, Astrophys. J. 875(1), L1 (2019)
CrossRef ADS arXiv Google scholar
[6]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First M87 event horizon telescope results. II. Array and instrumentation, Astrophys. J. Lett. 875(1), L2 (2019)
CrossRef ADS arXiv Google scholar
[7]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First M87 event horizon telescope results. III. Data Processing and Calibration, Astrophys. J. 875(1), L3 (2019)
CrossRef ADS arXiv Google scholar
[8]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First M87 event horizon telescope results. IV. Imaging the central supermassive black hole, Astrophys. J. 875(1), L4 (2019)
CrossRef ADS arXiv Google scholar
[9]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First M87 event horizon telescope results. V. Physical origin of the asymmetric ring, Astrophys. J. Lett. 875(1), L5 (2019)
CrossRef ADS arXiv Google scholar
[10]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First M87 event horizon telescope results. VI. The shadow and mass of the central black hole, Astrophys. J. Lett. 875(1), L6 (2019)
CrossRef ADS arXiv Google scholar
[11]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First Sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way, Astrophys. J. 930(2), L12 (2022)
CrossRef ADS arXiv Google scholar
[12]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First Sagittarius A* event horizon telescope results. II. EHT and multiwavelength observations, data processing, and calibration, Astrophys. J. Lett. 930(2), L13 (2022)
CrossRef ADS arXiv Google scholar
[13]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First Sagittarius A* event horizon telescope results. III. Imaging of the galactic center supermassive black hole, Astrophys. J. Lett. 930(2), L14 (2022)
CrossRef ADS arXiv Google scholar
[14]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First Sagittarius A* event horizon telescope results. IV. Variability, morphology, and black hole mass, Astrophys. J. Lett. 930(2), L15 (2022)
CrossRef ADS arXiv Google scholar
[15]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First Sagittarius A* event horizon telescope results. V. Testing astrophysical models of the galactic center black hole, Astrophys. J. Lett. 930(2), L16 (2022)
CrossRef ADS arXiv Google scholar
[16]
K. Akiyama , et al. [Event Horizon Telescope Collaboration] , . First Sagittarius A* event horizon telescope results. VI. Testing the black hole metric, Astrophys. J. Lett. 930(2), L17 (2022)
CrossRef ADS arXiv Google scholar
[17]
R. M. Wald, General Relativity, The University of Chicago Press, 1984
[18]
Y. Nambu , Wave optics and image formation in gravitational lensing, J. Phys. Conf. Ser. 410, 012036 (2013)
CrossRef ADS Google scholar
[19]
K. Hashimoto , S. Kinoshita , and K. Murata , Einstein rings in holography, Phys. Rev. Lett. 123(3), 031602 (2019)
CrossRef ADS arXiv Google scholar
[20]
K. Hashimoto , S. Kinoshita , and K. Murata , Imaging black holes through the AdS/CFT correspondence, Phys. Rev. D 101(6), 066018 (2020)
CrossRef ADS arXiv Google scholar
[21]
Y. X. Liu , Q. Chen , X. X. Zeng , H. B. Zhang , and W. L. Zhang , Holographic Einstein ring of a charged AdS black hole, J. High Energy Phys. 2022(10), 189 (2022)
CrossRef ADS arXiv Google scholar
[22]
Y. Kaku , K. Murata , and J. Tsujimura , Observing black holes through superconductors, J. High Energy Phys. 2021, 138 (2021)
CrossRef ADS arXiv Google scholar
[23]
X. Y. Hu , M. I. Aslam , R. Saleem , and X. X. Zeng , Dynamics of holographic images of scalar-tensorvector gravity-AdS black holes, Chin. Phys. C 48(9), 095108 (2024)
CrossRef ADS Google scholar
[24]
X. Y. Hu , X. X. Zeng , L. F. Li , and P. Xu , Holographic Einstein rings of non-commutative black holes, Eur. Phys. J. C 84(2), 199 (2024)
CrossRef ADS Google scholar
[25]
X. X. Zeng , K. J. He , J. Pu , G. P. Li , and Q. Q. Jiang , Holographic Einstein rings of a Gauss–Bonnet AdS black hole, Eur. Phys. J. C 83(10), 897 (2023)
CrossRef ADS Google scholar
[26]
G. P. Li , K. J. He , X. Y. Hu , and Q. Q. Jiang , Holographic images of an AdS black hole within the framework of f(R) gravity theory, Front. Phys. (Beijing) 19(5), 54202 (2024)
CrossRef ADS Google scholar
[27]
K. J. He , Y. W. Han , and G. P. Li , Holographic image features of Hayward−AdS black hole surrounded by quintessence dark energy, Phys. Dark Univ 44, 101468 (2024)
CrossRef ADS Google scholar
[28]
X. Y. Hu , X. X. Zeng , L. F. Li , and P. Xu , Holographic study on Einstein ring for a charged black hole in conformal gravity, Results Phys. 61, 107707 (2024)
CrossRef ADS Google scholar
[29]
G. P. Li , K. J. He , X. Y. Hu , and Q. Q. Jiang , Holographic images of an ads black hole within the framework of f(r) gravity theory, Front. Phys. (Beijing) 19(5), 54202 (2024)
CrossRef ADS Google scholar
[30]
L. Shao , Imaging supermassive black hole shadows with a global very long baseline interferometry array, Front. Phys. (Beijing) 17(4), 4 (2022)
CrossRef ADS Google scholar
[31]
Z. M. Xu , Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space, Front. Phys. (Beijing) 16(2), 7 (2021)
CrossRef ADS Google scholar
[32]
J. Dunkley , E. Komatsu , M. R. Nolta , D. N. Spergel , D. Larson , . Five-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data, Astrophys. J. Suppl. Ser. 180(2), 306 (2009)
CrossRef ADS arXiv Google scholar
[33]
S. Hannestad , Dark energy and dark matter from cosmological observations, Int. J. Mod. Phys. A 21(08−09), 1938 (2006)
CrossRef ADS Google scholar
[34]
K. Komatsu , K. M. Smith , J. Dunkley , C. L. Bennett , B. Gold , . Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation, Astrophys. J. Suppl. Ser. 192(2), 18 (2011)
CrossRef ADS arXiv Google scholar
[35]
P. Singh , M. Sami , and N. Dadhich , Cosmological dynamics of phantom field, Phys. Rev. D 68(2), 023522 (2003)
CrossRef ADS Google scholar
[36]
G. W. Gibbons and D. A. Rasheed , Dyson pairs and zero mass black holes, Nucl. Phys. B 476(3), 515 (1996)
CrossRef ADS Google scholar
[37]
M. Azreg-Ainou , G. Clement , J. C. Fabris , and M. E. Rodrigues , Phantom black holes and sigma models, Phys. Rev. D 83(12), 124001 (2011)
CrossRef ADS arXiv Google scholar
[38]
M. Azreg-Ainou , Light paths of normal and phantom Einstein−Maxwell-dilaton black holes, Phys. Rev. D 87(2), 024012 (2013)
CrossRef ADS Google scholar
[39]
G. N. Gyulchev and I. Z. Stefanov , Gravitational lensing by phantom black holes, Phys. Rev. D 87(6), 063005 (2013)
CrossRef ADS arXiv Google scholar
[40]
D. F. Jardim , M. E. Rodrigues , and M. J. S. Houndjo , Thermodynamics of phantom Reissner−Nordstrom−AdS black hole, Eur. Phys. J. Plus 127(10), 123 (2012)
CrossRef ADS Google scholar
[41]
J. X. Mo and S. Q. Lan , Phase transition and heat engine efficiency of phantom AdS black holes, Eur. Phys. J. C 78(8), 666 (2018)
CrossRef ADS arXiv Google scholar
[42]
X. X. Zeng , X. Y. Hu , and L. F. Li , Effect of phantom dark energy on holographic thermalization, Chin. Phys. Lett. 34(1), 010401 (2017)
CrossRef ADS arXiv Google scholar
[43]
M. U. Shahzad , S. Khalid , and A. Övgün , Motion of spinning particles around dynamic phantom AdS black holes, Eur. Phys. J. C 83(11), 1031 (2023)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(4459 KB)

Accesses

Citations

Detail

Sections
Recommended

/