
Design of a CsI(Tl) calorimeter for muonium-to-antimuonium conversion experiment
Siyuan Chen, Shihan Zhao, Weizhi Xiong, Ye Tian, Hui Jiang, Jiacheng Ling, Shishe Wang, Jian Tang
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 035202.
Design of a CsI(Tl) calorimeter for muonium-to-antimuonium conversion experiment
The muonium-to-antimuonium conversion experiment (MACE) is proposed to search for charged lepton flavor violation and increase the sensitivity by more than two orders of magnitude compared to the muonium−antimuonium conversion spectrometer (MACS) experiment at PSI in 1999. A clear signature of this conversion is the positron produced from antimuonium decay. This paper presents a near--coverage calorimeter designed for MACE, which can provide an energy resolution of 10.8% at 511 keV, and a signal efficiency of 78.3% for annihilation -ray events. Detailed Monte Carlo simulations using MACE offline software based on Geant4 are performed for geometry optimization, coincidence system design, background estimation, and benchmark detector validation.
muonium-to-antimuonium conversion / charged lepton flavor violation / electromagnetic calorimeter / inorganic scintillator detector
[1] |
F. P. An,et al. (Daya Bay),
|
[2] |
F. An, et al. (JUNO),
CrossRef
ADS
Google scholar
|
[3] |
A. -K. Perrevoort (Mu3e), A review of μ→eee, μ→eγ, and μN→eN conversion, PoS FPCP 2023, 015 (2023)
|
[4] |
A. M. Baldini, et al. (MEG II),
CrossRef
ADS
Google scholar
|
[5] |
K. Arndt, et al. (Mu3e),
CrossRef
ADS
Google scholar
|
[6] |
R. Abramishvili,et al. (COMET),
|
[7] |
L. Bartoszek,et al. (Mu2e),
|
[8] |
T. Fukuyama, Y. Mimura, and Y. Uesaka, Models of the muonium to antimuonium transition, Phys. Rev. D 105(1), 015026 (2022)
CrossRef
ADS
Google scholar
|
[9] |
R. Conlin, Lepton flavor violation and effective field theories, Ph.D. thesis, Wayne State University, Detroit, 2022
|
[10] |
J. Heeck,M. Sokhashvili, Lepton flavor violation by two units, arXiv: 2401.09580 [hep-ph] (2024)
|
[11] |
R. H. Bernstein and P. S. Cooper, Charged lepton flavor violation: An experimenter’s guide, Phys. Rep. 532(2), 27 (2013)
CrossRef
ADS
Google scholar
|
[12] |
C. Han, D. Huang, J. Tang, and Y. Zhang, Probing the doubly charged Higgs boson with a muonium to antimuonium conversion experiment, Phys. Rev. D 103(5), 055023 (2021)
CrossRef
ADS
Google scholar
|
[13] |
Y. Afik, P. S. Bhupal Dev, and A. Thapa, Hints of a new leptophilic Higgs sector, Phys. Rev. D 109(1), 015003 (2024)
CrossRef
ADS
Google scholar
|
[14] |
L. Willmann,
CrossRef
ADS
Google scholar
|
[15] |
L. Willmann and K. Jungmann, Muonium−antimuonium conversion, SciPost Phys. Proc. 5, 009 (2021)
CrossRef
ADS
Google scholar
|
[16] |
M. Aoki, Prospects of muonium to antimuonium conversion and μ−–μ+ conversion at PRISM, Nucl. Instrum. Methods Phys. Res. A 503(1−2), 258 (2003)
CrossRef
ADS
Google scholar
|
[17] |
N. Kawamura,
|
[18] |
A. -Y. Bai,
|
[19] |
A.-Y. Bai,
|
[20] |
H. Zhao,
CrossRef
ADS
Google scholar
|
[21] |
H.-J. Cai,
|
[22] |
Y. Hong,
CrossRef
ADS
Google scholar
|
[23] |
M. Lv,J. Wang,K. S. Khaw, A pulsed muon source based on a high-repetition-rate electron accelerator, arXiv: 2307.01455 [physics.acc-ph], in: 14th International Particle Accelerator Conference (2023)
|
[24] |
H. Miao,
|
[25] |
H. Peng,
CrossRef
ADS
Google scholar
|
[26] |
C. W. Fabjan and F. Gianotti, Calorimetry for particle physics, Rev. Mod. Phys. 75(4), 1243 (2003)
CrossRef
ADS
Google scholar
|
[27] |
M. Oreglia,
CrossRef
ADS
Google scholar
|
[28] |
E Frlež,
CrossRef
ADS
Google scholar
|
[29] |
W. Altmannshofer,et al. (PIONEER),
|
[30] |
O. Beesley,
|
[31] |
M. Jääskeläinen,
CrossRef
ADS
Google scholar
|
[32] |
M. Heil,R. Reifarth,M. M. Fowler,R. C. Haight,F. Käppeler,R. S. Rundberg,E. H. Seabury,J. L. Ullmann,J. B. Wilhelmy,K. Wisshak, A detector for (n, γ) cross-section measurements at a spallation neutron source, Nucl. Instrum. Methods Phys. Res. A 459(1–2), 229 (2001)
|
[33] |
C. Guerrero,
CrossRef
ADS
Google scholar
|
[34] |
D. L. Zhang, P. Cao, Q. Wang, B. He, Y. X. Zhang, X. C. Qi, T. Yu, and Q. An, System design for precise digitization and readout of the CSNS-WNS BaF2 spectrometer, Chin. Phys. C 41(2), 026102 (2017)
CrossRef
ADS
Google scholar
|
[35] |
S. Agostinelli,et al. (GEANT4),
|
[36] |
S. Zhao and J. Tang, Optimization of muonium yield in perforated silica aerogel, Phys. Rev. D 109(7), 072012 (2024)
CrossRef
ADS
Google scholar
|
[37] |
M. Goldberg, A class of multi-symmetric polyhedra, Tohoku Math. J. 43, 104 (1937)
|
[38] |
C. Loop, Smooth Subdivision Surfaces Based on Triangles, Master’s thesis, University of Utah, 1987
|
[39] |
D. Sieger,M. Botsch, The Polygon Mesh Processing Library, 2019
|
[40] |
Unreal Engine, URL: www.unrealengine.com
|
[41] |
R. L. Workman, et al. (Particle Data Group),
CrossRef
ADS
Google scholar
|
[42] |
C. Hu,L. Zhang,R. -Y. Zhu, Fast and radiation hard inorganic scintillators for future HEP experiments, J. Phys. Conf. Ser. 2374(1), 012110 (2022)
|
[43] |
Y. Song, Z. Jia, H. Yu, Z. Shen, Y. Zhang, J. Liu, M. Shao, and H. Peng, Pure CsI electromagnetic calorimeter design for the Super Tau-Charm Facility, Nucl. Instrum. Methods Phys. Res. A 1057, 168749 (2023)
CrossRef
ADS
Google scholar
|
[44] |
L. Willmann, Test Der Leptonenzahlerhaltung Bei Der Suche Nach Myonium-Antimyonium-Konversion, Ph. D. thesis, Heidelberg University, 1995
|
[45] |
F. Simon, Silicon photomultipliers in particle and nuclear physics, Nucl. Instrum. Methods Phys. Res. A 926, 85 (2019)
CrossRef
ADS
Google scholar
|
[46] |
S. Gundacker and A. Heering, The silicon photomultiplier: Fundamentals and applications of a modern solid-state photon detector, Phys. Med. Biol. 65(17), 17TR01 (2020)
CrossRef
ADS
Google scholar
|
[47] |
P. Lecoq,A. Getkin,M. Korzhik, Inorganic Scintillators for Detector Systems, Particle Acceleration and Detection, Springer, 2017
|
[48] |
V. Bora, H. H. Barrett, D. Fastje, E. Clarkson, L. Furenlid, A. Bousselham, K. S. Shah, and J. Glodo, Estimation of Fano factor in inorganic scintillators, Nucl. Instrum. Methods Phys. Res. A 805, 72 (2016)
CrossRef
ADS
Google scholar
|
[49] |
T. Yanagida, T. Kato, D. Nakauchi, and N. Kawaguchi, Fundamental aspects, recent progress and future prospects of inorganic scintillators, Jpn. J. Appl. Phys. 62(1), 010508 (2022)
CrossRef
ADS
Google scholar
|
[50] |
R. Brun,F. Rademakers, ROOT — An object oriented data analysis framework, Nucl. Instrum. Methods Phys. Res. A 389(1–2), 81 (1997)
|
[51] |
J. Huber, W. Moses, M. Andreaco, M. Loope, C. L. Melcher, and R. Nutt, Geometry and surface treatment dependence of the light collection from LSO crystals, Nucl. Instrum. Methods Phys. Res. A 437(2-3), 374 (1999)
CrossRef
ADS
Google scholar
|
[52] |
P. Mitra, M. Tyagi, R. G. Thomas, A. V. Kumar, and S. C. Gadkari, Optimization of parameters for a CsI(Tl) scintillator detector using GEANT4-based monte carlo simulation including optical photon transport, IEEE Trans. Nucl. Sci. 66(7), 1870 (2019)
CrossRef
ADS
Google scholar
|
[53] |
A. Papa, P. Schwendimann, A. M. Baldini, H. Benmansour, F. Cei, M. Chiappini, G. Chiarello, G. dal Maso, M. Francesconi, L. Galli, M. Grassi, U. Greuter, A. Gurgone, L. Kuenzi, D. Nicolo, S. Ritt, G. Signorelli, A. Venturini, and B. Vitali, Towards large calorimeters based on Lanthanum Bromide or LYSO crystals coupled to silicon photomultipliers: A first direct comparison for future precision physics, Nucl. Instrum. Methods Phys. Res. A 1049, 167997 (2023)
CrossRef
ADS
Google scholar
|
[54] |
Y. Xu, Y. S. Ning, Z. Z. Qin, Y. Teng, C. Q. Feng, J. Tang, Y. Chen, Y. Fukao, S. Mihara, and K. Oishi, Development of a scintillating-fiber-based beam monitor for the coherent muon-to-electron transition experiment, Nucl. Sci. Tech. 35(4), 79 (2024)
CrossRef
ADS
Google scholar
|
[55] |
L.-P. Zhou,
|
[56] |
D. Pagano, G. Bonomi, A. Donzella, A. Zenoni, G. Zumerle, and N. Zurlo, EcoMug: An efficient cosmic muon generator for cosmic-ray muon applications, Nucl. Instrum. Methods Phys. Res. A 1014, 165732 (2021)
CrossRef
ADS
Google scholar
|
[57] |
R. Shah,G. Majumder, Expected performance of cosmic Muon Veto Detector, arXiv: 2403.06114 [hep-ex] (2024)
|
[58] |
F. A. Danevich and V. I. Tretyak, Radioactive contamination of scintillators, Int. J. Mod. Phys. A 33(9), 1843007 (2018)
CrossRef
ADS
Google scholar
|
[59] |
M. Janecek, Reflectivity spectra for commonly used reflectors, IEEE Trans. Nucl. Sci. 59(3), 490 (2012)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |