Design of a CsI(Tl) calorimeter for muonium-to-antimuonium conversion experiment

Siyuan Chen, Shihan Zhao, Weizhi Xiong, Ye Tian, Hui Jiang, Jiacheng Ling, Shishe Wang, Jian Tang

Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 035202.

PDF(3497 KB)
PDF(3497 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 035202. DOI: 10.15302/frontphys.2025.035202
RESEARCH ARTICLE

Design of a CsI(Tl) calorimeter for muonium-to-antimuonium conversion experiment

Author information +
History +

Abstract

The muonium-to-antimuonium conversion experiment (MACE) is proposed to search for charged lepton flavor violation and increase the sensitivity by more than two orders of magnitude compared to the muonium−antimuonium conversion spectrometer (MACS) experiment at PSI in 1999. A clear signature of this conversion is the positron produced from antimuonium decay. This paper presents a near- 4π-coverage calorimeter designed for MACE, which can provide an energy resolution of 10.8% at 511 keV, and a signal efficiency of 78.3% for annihilation γ-ray events. Detailed Monte Carlo simulations using MACE offline software based on Geant4 are performed for geometry optimization, coincidence system design, background estimation, and benchmark detector validation.

Graphical abstract

Keywords

muonium-to-antimuonium conversion / charged lepton flavor violation / electromagnetic calorimeter / inorganic scintillator detector

Cite this article

Download citation ▾
Siyuan Chen, Shihan Zhao, Weizhi Xiong, Ye Tian, Hui Jiang, Jiacheng Ling, Shishe Wang, Jian Tang. Design of a CsI(Tl) calorimeter for muonium-to-antimuonium conversion experiment. Front. Phys., 2025, 20(3): 035202 https://doi.org/10.15302/frontphys.2025.035202

References

[1]
F. P. An,et al. (Daya Bay), ., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108(17), 171803 (2012)
[2]
F. An, et al. (JUNO), . Neutrino physics with JUNO, J. Phys. G 43(3), 030401 (2016)
CrossRef ADS Google scholar
[3]
A. -K. Perrevoort (Mu3e), A review of μ→eee, μ→eγ, and μN→eN conversion, PoS FPCP 2023, 015 (2023)
[4]
A. M. Baldini, et al. (MEG II), . The design of the MEG II experiment, Eur. Phys. J. C 78, 380 (2018)
CrossRef ADS Google scholar
[5]
K. Arndt, et al. (Mu3e), . Technical design of the phase I Mu3e experiment, Nucl. Instrum. Methods Phys. Res. A 1014, 165679 (2021)
CrossRef ADS Google scholar
[6]
R. Abramishvili,et al. (COMET), ., COMET Phase-I technical design report, Prog. Theor. Exp. Phys. 2020, 033C01 (2020)
[7]
L. Bartoszek,et al. (Mu2e), ., Mu2e technical design report, arXiv: 1501.05241 (2015)
[8]
T. Fukuyama, Y. Mimura, and Y. Uesaka, Models of the muonium to antimuonium transition, Phys. Rev. D 105(1), 015026 (2022)
CrossRef ADS Google scholar
[9]
R. Conlin, Lepton flavor violation and effective field theories, Ph.D. thesis, Wayne State University, Detroit, 2022
[10]
J. Heeck,M. Sokhashvili, Lepton flavor violation by two units, arXiv: 2401.09580 [hep-ph] (2024)
[11]
R. H. Bernstein and P. S. Cooper, Charged lepton flavor violation: An experimenter’s guide, Phys. Rep. 532(2), 27 (2013)
CrossRef ADS Google scholar
[12]
C. Han, D. Huang, J. Tang, and Y. Zhang, Probing the doubly charged Higgs boson with a muonium to antimuonium conversion experiment, Phys. Rev. D 103(5), 055023 (2021)
CrossRef ADS Google scholar
[13]
Y. Afik, P. S. Bhupal Dev, and A. Thapa, Hints of a new leptophilic Higgs sector, Phys. Rev. D 109(1), 015003 (2024)
CrossRef ADS Google scholar
[14]
L. Willmann, . New bounds from a search for muonium to antimuonium conversion, Phys. Rev. Lett. 82(1), 49 (1999)
CrossRef ADS Google scholar
[15]
L. Willmann and K. Jungmann, Muonium−antimuonium conversion, SciPost Phys. Proc. 5, 009 (2021)
CrossRef ADS Google scholar
[16]
M. Aoki, Prospects of muonium to antimuonium conversion and μμ+ conversion at PRISM, Nucl. Instrum. Methods Phys. Res. A 503(1−2), 258 (2003)
CrossRef ADS Google scholar
[17]
N. Kawamura, ., A new approach for Mu− Mu¯ conversion search, JPS Conf. Proc. 33, 011120 (2021)
[18]
A. -Y. Bai, ., Snowmass2021 Whitepaper: Muonium to antimuonium conversion, arXiv: 2203.11406 [hep-ph] (2022)
[19]
A.-Y. Bai, ., Conceptual design of the muonium-to-antimuonium conversion experiment (MACE), arXiv: 2410.18817 [hep-ex] (2024)
[20]
H. Zhao, . Huizhou accelerator complex facility and its future development, Sci. Sin. -Phys. Mech. Astron. 50, 112006 (2020)
CrossRef ADS Google scholar
[21]
H.-J. Cai, ., Towards a high-intensity muon source, Phys. Rev. Accel. Beams 27(2), 023403 (2024)
[22]
Y. Hong, . Beamline design for multipurpose muon beams at CSNS EMuS, Nucl. Sci. Tech. 35(5), 38 (2024)
CrossRef ADS Google scholar
[23]
M. Lv,J. Wang,K. S. Khaw, A pulsed muon source based on a high-repetition-rate electron accelerator, arXiv: 2307.01455 [physics.acc-ph], in: 14th International Particle Accelerator Conference (2023)
[24]
H. Miao, ., MCPSim: A GEANT4-based generic simulation toolkit for electron multipliers represented by Microchannel Plate, arXiv: 2310.05122 [physics.ins-det] (2023)
[25]
H. Peng, . Simulating the secondary electron avalanche of MCP by GEANT4, Nucl. Instrum. Methods Phys. Res. A 1062, 169163 (2024)
CrossRef ADS Google scholar
[26]
C. W. Fabjan and F. Gianotti, Calorimetry for particle physics, Rev. Mod. Phys. 75(4), 1243 (2003)
CrossRef ADS Google scholar
[27]
M. Oreglia, . Study of the reaction ψ′→ γγJψ, Phys. Rev. D 25(9), 2259 (1982)
CrossRef ADS Google scholar
[28]
E Frlež, . Design, commissioning and performance of the PIBETA detector at PSI, Nucl. Instrum. Meth. A 526, 300 (2004)
CrossRef ADS Google scholar
[29]
W. Altmannshofer,et al. (PIONEER), ., PIONEER: Studies of rare pion decays, arXiv: 2203.01981 [hep-ex] (2022)
[30]
O. Beesley, ., Measurements of a LYSO crystal array from threshold to 100 MeV, arXiv: 2409.14691 [physics.ins-det] (2024)
[31]
M. Jääskeläinen, . The spin spectrometer: Design, instrumentation and response characteristics of 4πγ-ray multidetector system, Nucl. Instrum. Methods Phys. Res. 204(2-3), 385 (1983)
CrossRef ADS Google scholar
[32]
M. Heil,R. Reifarth,M. M. Fowler,R. C. Haight,F. Käppeler,R. S. Rundberg,E. H. Seabury,J. L. Ullmann,J. B. Wilhelmy,K. Wisshak, A detector for (n, γ) cross-section measurements at a spallation neutron source, Nucl. Instrum. Methods Phys. Res. A 459(1–2), 229 (2001)
[33]
C. Guerrero, . The n_TOF total absorption calorimeter for neutron capture measurements at CERN, Nucl. Instrum. Methods Phys. Res. A 608(3), 424 (2009)
CrossRef ADS Google scholar
[34]
D. L. Zhang, P. Cao, Q. Wang, B. He, Y. X. Zhang, X. C. Qi, T. Yu, and Q. An, System design for precise digitization and readout of the CSNS-WNS BaF2 spectrometer, Chin. Phys. C 41(2), 026102 (2017)
CrossRef ADS Google scholar
[35]
S. Agostinelli,et al. (GEANT4), ., GEANT4 — a simulation toolkit, Nucl. Instrum. Methods Phys. Res. A 506(3), 250 (2003)
[36]
S. Zhao and J. Tang, Optimization of muonium yield in perforated silica aerogel, Phys. Rev. D 109(7), 072012 (2024)
CrossRef ADS Google scholar
[37]
M. Goldberg, A class of multi-symmetric polyhedra, Tohoku Math. J. 43, 104 (1937)
[38]
C. Loop, Smooth Subdivision Surfaces Based on Triangles, Master’s thesis, University of Utah, 1987
[39]
D. Sieger,M. Botsch, The Polygon Mesh Processing Library, 2019
[40]
Unreal Engine, URL: www.unrealengine.com
[41]
R. L. Workman, et al. (Particle Data Group), . Review of particle physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
CrossRef ADS Google scholar
[42]
C. Hu,L. Zhang,R. -Y. Zhu, Fast and radiation hard inorganic scintillators for future HEP experiments, J. Phys. Conf. Ser. 2374(1), 012110 (2022)
[43]
Y. Song, Z. Jia, H. Yu, Z. Shen, Y. Zhang, J. Liu, M. Shao, and H. Peng, Pure CsI electromagnetic calorimeter design for the Super Tau-Charm Facility, Nucl. Instrum. Methods Phys. Res. A 1057, 168749 (2023)
CrossRef ADS Google scholar
[44]
L. Willmann, Test Der Leptonenzahlerhaltung Bei Der Suche Nach Myonium-Antimyonium-Konversion, Ph. D. thesis, Heidelberg University, 1995
[45]
F. Simon, Silicon photomultipliers in particle and nuclear physics, Nucl. Instrum. Methods Phys. Res. A 926, 85 (2019)
CrossRef ADS Google scholar
[46]
S. Gundacker and A. Heering, The silicon photomultiplier: Fundamentals and applications of a modern solid-state photon detector, Phys. Med. Biol. 65(17), 17TR01 (2020)
CrossRef ADS Google scholar
[47]
P. Lecoq,A. Getkin,M. Korzhik, Inorganic Scintillators for Detector Systems, Particle Acceleration and Detection, Springer, 2017
[48]
V. Bora, H. H. Barrett, D. Fastje, E. Clarkson, L. Furenlid, A. Bousselham, K. S. Shah, and J. Glodo, Estimation of Fano factor in inorganic scintillators, Nucl. Instrum. Methods Phys. Res. A 805, 72 (2016)
CrossRef ADS Google scholar
[49]
T. Yanagida, T. Kato, D. Nakauchi, and N. Kawaguchi, Fundamental aspects, recent progress and future prospects of inorganic scintillators, Jpn. J. Appl. Phys. 62(1), 010508 (2022)
CrossRef ADS Google scholar
[50]
R. Brun,F. Rademakers, ROOT — An object oriented data analysis framework, Nucl. Instrum. Methods Phys. Res. A 389(1–2), 81 (1997)
[51]
J. Huber, W. Moses, M. Andreaco, M. Loope, C. L. Melcher, and R. Nutt, Geometry and surface treatment dependence of the light collection from LSO crystals, Nucl. Instrum. Methods Phys. Res. A 437(2-3), 374 (1999)
CrossRef ADS Google scholar
[52]
P. Mitra, M. Tyagi, R. G. Thomas, A. V. Kumar, and S. C. Gadkari, Optimization of parameters for a CsI(Tl) scintillator detector using GEANT4-based monte carlo simulation including optical photon transport, IEEE Trans. Nucl. Sci. 66(7), 1870 (2019)
CrossRef ADS Google scholar
[53]
A. Papa, P. Schwendimann, A. M. Baldini, H. Benmansour, F. Cei, M. Chiappini, G. Chiarello, G. dal Maso, M. Francesconi, L. Galli, M. Grassi, U. Greuter, A. Gurgone, L. Kuenzi, D. Nicolo, S. Ritt, G. Signorelli, A. Venturini, and B. Vitali, Towards large calorimeters based on Lanthanum Bromide or LYSO crystals coupled to silicon photomultipliers: A first direct comparison for future precision physics, Nucl. Instrum. Methods Phys. Res. A 1049, 167997 (2023)
CrossRef ADS Google scholar
[54]
Y. Xu, Y. S. Ning, Z. Z. Qin, Y. Teng, C. Q. Feng, J. Tang, Y. Chen, Y. Fukao, S. Mihara, and K. Oishi, Development of a scintillating-fiber-based beam monitor for the coherent muon-to-electron transition experiment, Nucl. Sci. Tech. 35(4), 79 (2024)
CrossRef ADS Google scholar
[55]
L.-P. Zhou, ., Design study for large acceptance muon beamlines by using beam splitting methods, J. Instrument. 17 (05), T05018 (2022)
[56]
D. Pagano, G. Bonomi, A. Donzella, A. Zenoni, G. Zumerle, and N. Zurlo, EcoMug: An efficient cosmic muon generator for cosmic-ray muon applications, Nucl. Instrum. Methods Phys. Res. A 1014, 165732 (2021)
CrossRef ADS Google scholar
[57]
R. Shah,G. Majumder, Expected performance of cosmic Muon Veto Detector, arXiv: 2403.06114 [hep-ex] (2024)
[58]
F. A. Danevich and V. I. Tretyak, Radioactive contamination of scintillators, Int. J. Mod. Phys. A 33(9), 1843007 (2018)
CrossRef ADS Google scholar
[59]
M. Janecek, Reflectivity spectra for commonly used reflectors, IEEE Trans. Nucl. Sci. 59(3), 490 (2012)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 12075326), the Natural Science Foundation of Guangzhou (No. 2024A04J6243), and the Fundamental Research Funds for the Central Universities (No. 23xkjc017) in Sun Yat-sen University. The authors would like to acknowledge the MACE Working Group for their invaluable teamwork. We also extend our gratitude to the colleagues at the SMOOTH lab, as well as to Ke Gong and Chenfeng Yang at Sun Yat-sen University, for their fruitful discussions and assistance related to this work. The simulation benefited greatly from the provision of computing resources by the National Supercomputer Center in Guangzhou. We are also grateful to the Southern Center for Nuclear-Science Theory (SCNT) at the Institute of Modern Physics in the Chinese Academy of Sciences for hospitality.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(3497 KB)

Accesses

Citations

Detail

Sections
Recommended

/