Thermodynamic properties and shadows of black holes in $f(R,T)$ gravity

Bidyut Hazarika, Prabwal Phukon

Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 035201.

PDF(7171 KB)
PDF(7171 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 035201. DOI: 10.15302/frontphys.2025.035201
RESEARCH ARTICLE

Thermodynamic properties and shadows of black holes in $f(R,T)$ gravity

Author information +
History +

Abstract

We explored two f(R ,T) gravity models and derived black hole solutions within these models. We focus on investigating how the f(R ,T) model influences the thermodynamic characteristics of black holes by studying their thermodynamic topology and thermodynamic geometry. We considered five specific values of the thermodynamic parameter ω, which signify five different classes of black hole solutions in general relativity (GR). We observed significant changes in the local topological properties of these black holes compared to GR, depending on the model parameters. Notably, we identified an additional topological class W= 0 for some values of ω that is absent in the GR framework. We also studied the thermodynamic geometry of the black hole using the Geometrothermodynamics (GTD) formalism. Our analysis demonstrates that the singular point, where the GTD scalar curvature diverges, corresponds exactly to the point where the heat capacity changes sign. Additionally, we constrained the model parameters of both models considered by utilizing black hole shadow data from the Sgr A* black hole, measured by the Event Horizon Telescope (EHT).

Graphical abstract

Keywords

${\color{khaki}{f(R,T)}} $ gravity / black hole thermodynamics / black hole shadows

Cite this article

Download citation ▾
Bidyut Hazarika, Prabwal Phukon. Thermodynamic properties and shadows of black holes in f( R,T) gravity. Front. Phys., 2025, 20(3): 035201 https://doi.org/10.15302/frontphys.2025.035201

References

[1]
B. P. Abbott, . [LIGO Scientific Collaboration and Virgo Collaboration], Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016), arXiv: 1602.03837
[2]
K. Akiyama, et al. [The Event Horizon Telescope Collaboration], . First M87 event horizon telescope results. I. The shadow of the supermassive black hole, Astrophys. J. 871, L1 (2019)
CrossRef ADS arXiv Google scholar
[3]
K. Akiyama, et al. [The Event Horizon Telescope Collaboration], . First M87 event horizon telescope results. II. Array and instrumentation, Astrophys. J. Lett. 875(1), L2 (2019)
CrossRef ADS arXiv Google scholar
[4]
K. Akiyama, et al. [The Event Horizon Telescope Collaboration], . First M87 event horizon telescope results. III. Data processing and calibration, Astrophys. J. Lett. 875(1), L3 (2019)
CrossRef ADS arXiv Google scholar
[5]
K. Akiyama, et al. [The Event Horizon Telescope Collaboration], . First M87 event horizon telescope results. IV. Imaging the central supermassive black hole, Astrophys. J. 875, L4 (2019)
CrossRef ADS arXiv Google scholar
[6]
K. Akiyama, et al. [The Event Horizon Telescope Collaboration], . First M87 event horizon telescope results. V. Physical origin of the asymmetric ring, Astrophys. J. Lett. 875(1), L5 (2019)
CrossRef ADS arXiv Google scholar
[7]
K. Akiyama, et al. [The Event Horizon Telescope Collaboration], . First M87 event horizon telescope results. VI. The shadow and mass of the central black hole, Astrophys. J. Lett. 875(1), L6 (2019)
CrossRef ADS arXiv Google scholar
[8]
A. G. Reiss, ., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998), arXiv: astro-ph/9805201
[9]
S. Perlmutter, ., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517(2), 565 (1999), arXiv: astro-ph/9812133
[10]
D. N. Spergel, ., Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for cosmology, Astrophys. J. Suppl. Ser. 170(2), 377 (2007), arXiv: astro-ph/0603449
[11]
P. Astier, ., The Supernova Legacy Survey: Measurement of ΩM, ΩΛ and ω from the first year data set, Astron. Astrophys. 447, 31 (2006), arXiv: astro-ph/0510447
[12]
P. D. Naselskii and A. G. Polnarev, Candidate missing mass carriers in an inflationary universe, Sov. Astron. 29, 487 (1985)
[13]
T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov, f(R, T) gravity, Phys. Rev. D 84(2), 024020 (2011)
CrossRef ADS arXiv Google scholar
[14]
D. J Eisenstein, et al. [SDSS], . Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J. 633(2), 560 (2005)
CrossRef ADS Google scholar
[15]
M. Sharif and M. Zubair, Thermodynamics in f(R, T) theory of gravity, J. Cosmol. Astropart. Phys. 2012, 028 (2012)
CrossRef ADS arXiv Google scholar
[16]
M. Jamil,D. Momeni,M. Raza,R. Myrzakulov, Reconstruction of some cosmological models in f(R, T) gravity, Eur. Phys. J. C 72, 1999 (2012), arXiv: 1107.5807
[17]
H. Shabani and M. Farhoudi, Cosmological and solar system consequences of f(R, T) gravity models, Phys. Rev. D 90(4), 044031 (2014)
CrossRef ADS arXiv Google scholar
[18]
L. C. N. Santos, F. M. da Silva, C. E. Mota, I. P. Lobo, and V. B. Bezerra, Kiselev black holes in f(R, T) gravity, Gen. Relativ. Gravit. 55(8), 94 (2023)
CrossRef ADS Google scholar
[19]
A. Sood, A. Kumar, J. K. Singh, and S. G. Ghosh, Photon orbits and phase transitions in Kiselev-AdS black holes from gravity, Eur. Phys. J. C 84(8), 876 (2024)
CrossRef ADS Google scholar
[20]
G. Mohan,U. D. Goswami, Galactic rotation curves of spiral galaxies and dark matter in f(R, T) gravity theory, Int. J. Geom. Meth. Mod. Phys. 21(04), 2450082 (2024), arXiv: 2211.02948 [gr-qc]
[21]
M. M. Gohain, C. Chetia, and K. Bhuyan, Emergent cosmology in magnetized Bianchi VI geometry within f(R, T) gravity, Int. J. Theor. Phys. 63(5), 133 (2024)
CrossRef ADS Google scholar
[22]
T. Tangphati, M. Youk, and S. Ponglertsakul, Magnetically charged regular black holes in f(R, T) gravity coupled to nonlinear electrodynamics, J. High Energy Astrophys. 43, 66 (2024)
CrossRef ADS Google scholar
[23]
P. Sarmah,U. D. Goswami, Observational constraints on cosmological parameters in the Bianchi type III universe with f(R, T) gravity theory, arXiv: 2410.02386 [gr-qc] (2024)
[24]
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
CrossRef ADS Google scholar
[25]
S. W. Hawking, Black hole explosions, Nature 248(5443), 30 (1974)
CrossRef ADS Google scholar
[26]
S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975) [Erratum: Commun. Math. Phys. 46, 206 (1976)]
[27]
J. M. Bardeen, B. Carter, and S. W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
CrossRef ADS Google scholar
[28]
R. M. Wald, Entropy and black-hole thermodynamics, Phys. Rev. D 20(6), 1271 (1979)
CrossRef ADS Google scholar
[29]
J. D. Bekenstein, Black-hole thermodynamics, Phys. Today 33(1), 24 (1980)
CrossRef ADS Google scholar
[30]
R. M. Wald, The thermodynamics of black holes, Living Rev. Rel. 4, 6 (2001), arXiv: gr-qc/9912119
[31]
S. Carlip, Black hole thermodynamics, Int. J. Mod. Phys. D 23(11), 1430023 (2014)
CrossRef ADS arXiv Google scholar
[32]
A. C. Wall, A survey of black hole thermodynamics, arXiv: 1804.10610 [gr-qc] (2018)
[33]
P. Candelas and D. W. Sciama, Irreversible thermodynamics of black holes, Phys. Rev. Lett. 38(23), 1372 (1977)
CrossRef ADS Google scholar
[34]
S. Mahapatra, P. Phukon, and T. Sarkar, Black hole entropy corrections in the grand canonical ensemble, Phys. Rev. D 84(4), 044041 (2011)
CrossRef ADS arXiv Google scholar
[35]
G. P. Li, K. J. He, X. Y. Hu, and Q. Q. Jiang, Holographic images of an AdS black hole within the framework of f(R) gravity theory, Front. Phys. 19(5), 54202 (2024)
CrossRef ADS Google scholar
[36]
P. C. W. Davies, Thermodynamic phase transitions of Kerr–Newman black holes in de Sitter space, Class. Quantum Gravity 6(12), 1909 (1989)
CrossRef ADS Google scholar
[37]
S. W. Hawking and D. N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87(4), 577 (1983)
CrossRef ADS Google scholar
[38]
A. Curir, Rotating black holes as dissipative spin-thermodynamical systems, Gen. Relativ. Gravit. 13(5), 417 (1981)
CrossRef ADS Google scholar
[39]
A. Curir, Black hole emissions and phase transitions, Gen. Relativ. Gravit. 13(12), 1177 (1981)
CrossRef ADS Google scholar
[40]
D. Pavón and J. M. Rubi, Nonequilibrium thermodynamic fluctuations of black holes, Phys. Rev. D 37(8), 2052 (1988)
CrossRef ADS Google scholar
[41]
D. Pavón, Phase transition in Reissner–Nordstrom black holes, Phys. Rev. D 43(8), 2495 (1991)
CrossRef ADS Google scholar
[42]
O. Kaburaki, Critical behavior of extremal Kerr–Newman black holes, Gen. Relativ. Gravit. 28(7), 843 (1996)
CrossRef ADS Google scholar
[43]
R. G. Cai,Z. J. Lu,Y. Z. Zhang, Critical behavior in (2+1)-dimensional black holes, Phys. Rev. D 55, 853 (1997), arXiv: gr-qc/9702032
[44]
R. G. Cai,J. H. Cho, Thermodynamic curvature of the BTZ black hole, Phys. Rev. D 60, 067502 (1999), arXiv: hep-th/9803261
[45]
Y. H. Wei, Thermodynamic critical and geometrical properties of charged BTZ black hole, Phys. Rev. D 80(2), 024029 (2009)
CrossRef ADS Google scholar
[46]
K. Bhattacharya, S. Dey, B. R. Majhi, and S. Samanta, General framework to study the extremal phase transition of black holes, Phys. Rev. D 99(12), 124047 (2019)
CrossRef ADS arXiv Google scholar
[47]
D. Kastor, S. Ray, and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quantum Gravity 26(19), 195011 (2009)
CrossRef ADS arXiv Google scholar
[48]
B. P. Dolan, The cosmological constant and the black hole equation of state, Class. Quantum Gravity 28(12), 125020 (2011)
CrossRef ADS arXiv Google scholar
[49]
B. P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quantum Gravity 28(23), 235017 (2011)
CrossRef ADS arXiv Google scholar
[50]
B. P. Dolan, Compressibility of rotating black holes, Phys. Rev. D 84(12), 127503 (2011)
CrossRef ADS arXiv Google scholar
[51]
B. P. Dolan, Where is the PdV in the first law of black hole thermodynamics? arXiv: 1209.1272 [gr-qc] (2012)
[52]
D. Kubizňák,R. B. Mann, P−V criticality of charged AdS black holes, J. High Energy Phys. 07, 033 (2012), arXiv: 1205.0559 [hep-th]
[53]
D. Kubizňák, R. B. Mann, and M. Teo, Black hole chemistry: Thermodynamics with lambda, Class. Quantum Gravity 34(6), 063001 (2017)
CrossRef ADS arXiv Google scholar
[54]
K. Bhattacharya, B. R. Majhi, and S. Samanta, Van der Waals criticality in AdS black holes: A phenomenological study, Phys. Rev. D 96(8), 084037 (2017)
CrossRef ADS arXiv Google scholar
[55]
Z. M. Xu, Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space, Front. Phys. 16(2), 24502 (2021)
CrossRef ADS arXiv Google scholar
[56]
P. V. P. Cunha, E. Berti, and C. A. R. Herdeiro, Light ring stability in ultra-compact objects, Phys. Rev. Lett. 119(25), 251102 (2017)
CrossRef ADS arXiv Google scholar
[57]
P. V. P. Cunha and C. A. R. Herdeiro, Stationary black holes and light rings, Phys. Rev. Lett. 124(18), 181101 (2020)
CrossRef ADS arXiv Google scholar
[58]
S. W. Wei, Topological charge and black hole photon spheres, Phys. Rev. D 102(6), 064039 (2020)
CrossRef ADS arXiv Google scholar
[59]
M. Guo and S. Gao, Universal properties of light rings for stationary axisymmetric spacetimes, Phys. Rev. D 103(10), 104031 (2021)
CrossRef ADS arXiv Google scholar
[60]
M. Guo, Z. Zhong, J. Wang, and S. Gao, Light rings and long-lived modes in quasiblack hole spacetimes, Phys. Rev. D 105(2), 024049 (2022)
CrossRef ADS arXiv Google scholar
[61]
S. P. Wu and S. W. Wei, Topology of light rings for extremal and nonextremal Kerr–Newman–Taub-NUT black holes without Z2 symmetry, Phys. Rev. D 108(10), 104041 (2023)
CrossRef ADS Google scholar
[62]
P. V. P. Cunha, C. A. R. Herdeiro, and J. P. A. Novo, Light rings on stationary axisymmetric spacetimes: Blind to the topology and able to coexist, Phys. Rev. D 109(6), 064050 (2024)
CrossRef ADS Google scholar
[63]
S. W. Wei and Y. X. Liu, Topology of equatorial timelike circular orbits around stationary black holes, Phys. Rev. D 107(6), 064006 (2023)
CrossRef ADS arXiv Google scholar
[64]
X. Ye,S. W. Wei, Topological study of equatorial timelike circular orbit for spherically symmetric (hairy) black holes, J. Cosmol. Astropart. Phys. 07, 049 (2023), arXiv: 2301.04786
[65]
X. Ye,S. W. Wei, Novel topological phenomena of timelike circular orbits for charged test particles, arXiv: 2406.13270 (2024)
[66]
S. W. Wei and Y. X. Liu, Topology of black hole thermodynamics, Phys. Rev. D 105(10), 104003 (2022)
CrossRef ADS arXiv Google scholar
[67]
S. W. Wei, Y. X. Liu, and R. B. Mann, Black hole solutions as topological thermodynamic defects, Phys. Rev. Lett. 129(19), 191101 (2022)
CrossRef ADS arXiv Google scholar
[68]
Y. S. Duan, The structure of the topological current, SLAC-PUB-3301, 1984
[69]
Y. S. Duan and M. L. Ge, SU(2) gauge theory and electrodynamics with N magnetic monopoles, Sci. Sin. 9, 1072 (1979)
[70]
P. K. Yerra and C. Bhamidipati, Topology of black hole thermodynamics in Gauss–Bonnet gravity, Phys. Rev. D 105(10), 104053 (2022)
CrossRef ADS arXiv Google scholar
[71]
P. K. Yerra and C. Bhamidipati, Topology of Born–Infeld AdS black holes in 4D novel Einstein–Gauss–Bonnet gravity, Phys. Lett. B 835, 137591 (2022)
CrossRef ADS arXiv Google scholar
[72]
M. B. Ahmed, D. Kubizňák, and R. B. Mann, Vortex/anti-vortex pair creation in black hole thermodynamics, Phys. Rev. D 107(4), 046013 (2023)
CrossRef ADS arXiv Google scholar
[73]
N. J. Gogoi and P. Phukon, Topology of thermodynamics in R-charged black holes, Phys. Rev. D 107(10), 106009 (2023)
CrossRef ADS Google scholar
[74]
M. Zhang and J. Jiang, Bulk-boundary thermodynamic equivalence: A topology viewpoint, J. High Energy Phys. 2023(6), 115 (2023)
CrossRef ADS arXiv Google scholar
[75]
M. R. Alipour, M. A. S. Afshar, S. N. Gashti, and J. Sadeghi, Topological classification and black hole thermodynamics, Phys. Dark Univ. 42, 101361 (2023)
CrossRef ADS arXiv Google scholar
[76]
Z. M. Xu,Y. S. Wang,B. Wu,W. L. Yang, Riemann surface, winding number and black hole thermodynamics, arXiv: 2305.05916 (2023)
[77]
M. Y. Zhang, H. Chen, H. Hassanabadi, Z. W. Long, and H. Yang, Topology of nonlinearly charged black hole chemistry via massive gravity, Eur. Phys. J. C 83(8), 773 (2023)
CrossRef ADS arXiv Google scholar
[78]
T. N. Hung and C. H. Nam, Topology in thermodynamics of regular black strings with Kaluza–Klein reduction, Eur. Phys. J. C 83(7), 582 (2023)
CrossRef ADS arXiv Google scholar
[79]
J. Sadeghi,M. R. Alipour,S. N. Gashti,M. A. S. Afshar, Bulk-boundary and RPS thermodynamics from topology perspective, arXiv: 2306.16117 (2023)
[80]
P. K. Yerra, C. Bhamidipati, and S. Mukherji, Topology of critical points and Hawking–Page transition, Phys. Rev. D 106(6), 064059 (2022)
CrossRef ADS arXiv Google scholar
[81]
Z. Y. Fan, Topological interpretation for phase transitions of black holes, Phys. Rev. D 107(4), 044026 (2023)
CrossRef ADS arXiv Google scholar
[82]
N. C. Bai, L. Li, and J. Tao, Topology of black hole thermodynamics in Lovelock gravity, Phys. Rev. D 107(6), 064015 (2023)
CrossRef ADS arXiv Google scholar
[83]
N. C. Bai, L. Song, and J. Tao, Reentrant phase transition in holographic thermodynamics of Born–Infeld AdS black hole, Eur. Phys. J. C 84(1), 43 (2024)
CrossRef ADS Google scholar
[84]
R. Li, C. H. Liu, K. Zhang, and J. Wang, Topology of the landscape and dominant kinetic path for the thermodynamic phase transition of the charged Gauss–Bonnet AdS black holes, Phys. Rev. D 108(4), 044003 (2023)
CrossRef ADS arXiv Google scholar
[85]
P. K. Yerra,C. Bhamidipati,S. Mukherji, Topology of critical points in boundary matrix duals, arXiv: 2304.14988 (2023)
[86]
C. X. Fang, J. Jiang, and M. Zhang, Revisiting thermodynamic topologies of black holes, J. High Energy Phys. 2023(1), 102 (2023)
CrossRef ADS arXiv Google scholar
[87]
Y. Z. Du,H. F. Li,Y. B. Ma,Q. Gu, Topology and phase transition for EPYM AdS black hole in thermal potential, arXiv: 2309.00224 (2023)
[88]
P. K. Yerra, C. Bhamidipati, and S. Mukherji, Topology of Hawking−Page transition in Born–Infeld AdS black holes, J. Phys. Conf. Ser. 2667(1), 012031 (2023)
CrossRef ADS Google scholar
[89]
K. Bhattacharya, K. Bamba, and D. Singleton, Topological interpretation of extremal and Davies-type phase transitions of black holes, Phys. Lett. B 854, 138722 (2024)
CrossRef ADS arXiv Google scholar
[90]
H. Chen,M. Y. Zhang,H. Hassanabadi,B. C. Lutfuoglu,Z. W. Long, Topology of dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity, arXiv: 2403.14730 (2024)
[91]
B. Hazarika,N. J. Gogoi,P. Phukon, Revisiting thermodynamic topology of Hawking-Page and Davies type phase transitions, arXiv: 2404.02526 (2024)
[92]
C. H. Liu and J. Wang, The topological natures of the Gauss–Bonnet black hole in AdS space, Phys. Rev. D 107(6), 064023 (2023)
CrossRef ADS arXiv Google scholar
[93]
D. Wu, Topological classes of rotating black holes, Phys. Rev. D 107(2), 024024 (2023)
CrossRef ADS arXiv Google scholar
[94]
D. Wu and S. Q. Wu, Topological classes of thermodynamics of rotating AdS black holes, Phys. Rev. D 107(8), 084002 (2023)
CrossRef ADS arXiv Google scholar
[95]
N. Chatzifotis, P. Dorlis, N. E. Mavromatos, and E. Papantonopoulos, Thermal stability of hairy black holes, Phys. Rev. D 107(8), 084053 (2023)
CrossRef ADS arXiv Google scholar
[96]
S. W. Wei, Y. P. Zhang, Y. X. Liu, and R. B. Mann, Static spheres around spherically symmetric black hole spacetime, Phys. Rev. Res. 5(4), 043050 (2023)
CrossRef ADS arXiv Google scholar
[97]
Y. Du and X. Zhang, Topological classes of black holes in de Sitter spacetime, Eur. Phys. J. C 83(10), 927 (2023)
CrossRef ADS arXiv Google scholar
[98]
C. Fairoos and T. Sharqui, Topological nature of black hole solutions in dRGT massive gravity, Int. J. Mod. Phys. A 38(25), 2350133 (2023)
CrossRef ADS Google scholar
[99]
D. Chen, Y. He, and J. Tao, Topological classes of higher-dimensional black holes in massive gravity, Eur. Phys. J. C 83(9), 872 (2023)
CrossRef ADS arXiv Google scholar
[100]
N. J. Gogoi and P. Phukon, Thermodynamic topology of 4D dyonic AdS black holes in different ensembles, Phys. Rev. D 108(6), 066016 (2023)
CrossRef ADS arXiv Google scholar
[101]
J. Sadeghi, S. N. Gashti, M. R. Alipour, and M. A. S. Afshar, Bardeen black hole thermodynamics from topological perspective, Ann. Phys. 455, 169391 (2023)
CrossRef ADS arXiv Google scholar
[102]
M. S. Ali, H. El Moumni, J. Khalloufi, and K. Masmar, Topology of Born–Infeld-AdS black hole phase transition, Ann. Phys. 465, 169679 (2024)
CrossRef ADS arXiv Google scholar
[103]
D. Wu, Classifying topology of consistent thermodynamics of the four-dimensional neutral Lorentzian NUT charged spacetimes, Eur. Phys. J. C 83(5), 365 (2023)
CrossRef ADS arXiv Google scholar
[104]
D. Wu, Consistent thermodynamics and topological classes for the four-dimensional Lorentzian charged Taub-NUT spacetimes, Eur. Phys. J. C 83(7), 589 (2023)
CrossRef ADS arXiv Google scholar
[105]
D. Wu, Topological classes of thermodynamics of the four-dimensional static accelerating black holes, Phys. Rev. D 108(8), 084041 (2023)
CrossRef ADS arXiv Google scholar
[106]
J. Sadeghi, M. A. S. Afshar, S. N. Gashti, and M. R. Alipour, Thermodynamic topology and photon spheres in the hyperscaling violating black holes, Astropart. Phys. 156, 102920 (2024)
CrossRef ADS arXiv Google scholar
[107]
F. Barzi, H. E. Moumni, and K. Masmar, Rényi topology of charged-flat black hole: Hawking–Page and van der Waals phase transitions, J. High Energy Astrophys. 42, 63 (2024)
CrossRef ADS arXiv Google scholar
[108]
M. U. Shahzad, A. Mehmood, S. Sharif, and A. Övgün, Criticality and topological classes of neutral Gauss–Bonnet AdS black holes in 5D, Ann. Phys. 458, 169486 (2023)
CrossRef ADS Google scholar
[109]
C. W. Tong,B. H. Wang,J. R. Sun, Topology of black hole thermodynamics via Rényi statistics, arXiv: 2310.09602 (2023)
[110]
A. Mehmood,M. U. Shahzad, Thermodynamic topological classifications of well-known black holes, arXiv: 2310.09907 (2023)
[111]
M. Rizwan and K. Jusufi, Topological classes of thermodynamics of black holes in perfect fluid dark matter background, Eur. Phys. J. C 83(10), 944 (2023)
CrossRef ADS arXiv Google scholar
[112]
C. Fairoos, Topological interpretation of black hole phase transition in Gauss–Bonnet gravity, Int. J. Mod. Phys. A 39(05n06), 2450030 (2024)
CrossRef ADS arXiv Google scholar
[113]
D. Chen, Y. He, J. Tao, and W. Yang, Topology of Horava–Lifshitz black holes in different ensembles, Eur. Phys. J. C 84(1), 96 (2024)
CrossRef ADS Google scholar
[114]
J. Sadeghi, M. A. S. Afshar, S. N. Gashti, and M. R. Alipour, Thermodynamic topology of black holes from bulk-boundary, extended, and restricted phase space perspectives, Ann. Phys. 460, 169569 (2024)
CrossRef ADS Google scholar
[115]
B. Hazarika,P. Phukon, Thermodynamic topology of D = 4, 5 Horava Lifshitz black hole in two ensembles, arXiv: 2312.06324 (2023)
[116]
N. J. Gogoi and P. Phukon, Thermodynamic topology of 4D Euler–Heisenberg-AdS black hole in different ensembles, Phys. Dark Univ. 44, 101456 (2024)
CrossRef ADS arXiv Google scholar
[117]
M. Y. Zhang,H. Chen,H. Hassanabadi,Z. W. Long,H. Yang, Thermodynamic topology of Kerr–Sen black holes via Rényi statistics, arXiv: 2312.12814 (2023)
[118]
J. Sadeghi, M. A. S. Afshar, S. Noori Gashti, and M. R. Alipour, Topology of Hayward-AdS black hole thermodynamics, Phys. Scr. 99(2), 025003 (2024)
CrossRef ADS Google scholar
[119]
B. Hazarika and P. Phukon, Thermodynamic topology of black holes in f(R) gravity, Prog. Theor. Exp. Phys. 2024(4), 043E01 (2024)
CrossRef ADS arXiv Google scholar
[120]
A. Malik, A. Mehmood, and M. U. Shahzad, Thermodynamic topological classification of higher dimensional and massive gravity black holes, Ann. Phys. 463, 169617 (2024)
CrossRef ADS arXiv Google scholar
[121]
M. U. Shahzad, A. Mehmood, A. Malik, and A. Övgün, Topological behavior of 3D regular black hole with zero point length, Phys. Dark Univ. 44, 101437 (2024)
CrossRef ADS Google scholar
[122]
S. P. Wu,S. W. Wei, Thermodynamical topology of quantum BTZ black hole, arXiv: 2403.14167 (2024)
[123]
H. Chen,M. Y. Zhang,H. Hassanabadi,Z. W. Long, Thermodynamic topology of phantom AdS black holes in massive gravity, arXiv: 2404.08243 (2024)
[124]
B. Hazarika,P. Phukon, Topology of restricted phase space thermodynamics in Kerr-Sen-AdS black holes, arXiv: 2405.02328 (2024)
[125]
Z. Q. Chen,S. W. Wei, Thermodynamical topology with multiple defect curves for dyonic AdS black holes, arXiv: 2405.07525 (2024)
[126]
B. E. Panah,B. Hazarika,P. Phukon, Thermodynamic topology of topological black hole in F(R)-ModMax gravity’s rainbow, arXiv: 2405.20022 (2024)
[127]
H. Wang,Y. Z. Du, Topology of the charged AdS black hole in restricted phase space, arXiv: 2406.08793 (2024)
[128]
A. S. Mohamed and E. E. Zotos, Motion of test particles and topological interpretation of generic rotating regular black holes coupled to non-linear electrodynamics, Astron. Comput. 48, 100853 (2024)
CrossRef ADS Google scholar
[129]
D. Wu, S. Y. Gu, X. D. Zhu, Q. Q. Jiang, and S. Z. Yang, Topological classes of thermodynamics of the static multi-charge AdS black holes in gauged supergravities: Novel temperature-dependent thermodynamic topological phase transition, J. High Energy Phys. 2024(6), 213 (2024)
CrossRef ADS arXiv Google scholar
[130]
X. D. Zhu, D. Wu, and D. Wen, Topological classes of thermodynamics of the rotating charged AdS black holes in gauged supergravities, Phys. Lett. B 856, 138919 (2024)
CrossRef ADS arXiv Google scholar
[131]
S. W. Wei, Y. X. Liu, and R. B. Mann, Universal topological classifications of black hole thermodynamics, Phys. Rev. D 110(8), L081501 (2024)
CrossRef ADS arXiv Google scholar
[132]
W. Liu,L. Zhang,D. Wu,J. Wang, Thermodynamic topological classes of the rotating, accelerating black holes, arXiv: 2409.11666 (2024)
[133]
X. D. Zhu,W. Liu,D. Wu, Universal thermodynamic topological classes of rotating black holes, arXiv: 2409.12747 (2024)
[134]
D. Wu,W. Liu,S. Q. Wu,R. B. Mann, Novel topological classes in black hole thermodynamics, arXiv: 2411.10102 (2024)
[135]
F. Weinhold, Thermodynamics and geometry, Phys. Today 29(3), 23 (1976)
CrossRef ADS Google scholar
[136]
G. Ruppeiner, Thermodynamics: A Riemannian geometric model, Phys. Rev. A 20(4), 1608 (1979)
CrossRef ADS Google scholar
[137]
G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67(3), 605 (1995)
CrossRef ADS Google scholar
[138]
R. Mrugała, On equivalence of two metrics in classical thermodynamics, Physica A 125(2−3), 631 (1984)
CrossRef ADS Google scholar
[139]
J. E. Aman, I. Bengtsson, and N. Pidokrajt, Geometry of black hole thermodynamics, Gen. Relativ. Gravit. 35(10), 1733 (2003)
CrossRef ADS Google scholar
[140]
H. Quevedo, Geometrothermodynamics, J. Math. Phys. 48, 013506 (2007)
CrossRef ADS Google scholar
[141]
H. Quevedo, Geometrothermodynamics of black holes, Gen. Relativ. Gravit. 40(5), 971 (2008)
CrossRef ADS arXiv Google scholar
[142]
S. Vagnozzi, R. Roy, Y. D. Tsai, L. Visinelli, M. Afrin, A. Allahyari, P. Bambhaniya, D. Dey, S. G. Ghosh, P. S. Joshi, K. Jusufi, M. Khodadi, R. K. Walia, A. Övgün, and C. Bambi, Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A*, Class. Quantum Gravity 40(16), 165007 (2023)
CrossRef ADS arXiv Google scholar
[143]
K. Jusufi, Quasinormal modes of black holes surrounded by dark matter and their connection with the shadow radius, Phys. Rev. D 101(8), 084055 (2020)
CrossRef ADS arXiv Google scholar
[144]
T. Johannsen, A. E. Broderick, P. M. Plewa, S. Chatzopoulos, S. S. Doeleman, F. Eisenhauer, V. L. Fish, R. Genzel, O. Gerhard, and M. D. Johnson, Testing general relativity with the shadow size of SGR A*, Phys. Rev. Lett. 116(3), 031101 (2016)
CrossRef ADS arXiv Google scholar
[145]
D. Psaltis, Testing general relativity with the Event Horizon Telescope, Gen. Relativ. Gravit. 51(10), 137 (2019)
CrossRef ADS arXiv Google scholar
[146]
P. Kocherlakota, . Event Horizon Telescope, Phys. Rev. D 103(10), 104047 (2021)
CrossRef ADS arXiv Google scholar
[147]
V. Prokopov, S. Alexeyev, and O. Zenin, Black hole shadows constrain extended gravity, J. Exp. Theor. Phys. 135(1), 91 (2022)
CrossRef ADS arXiv Google scholar
[148]
K. Jafarzade, M. K. Zangeneh, and F. S. N. Lobo, Observational optical constraints of regular black holes, Ann. Phys. 446, 169126 (2022)
CrossRef ADS arXiv Google scholar
[149]
I. Çimdiker, D. Demir, and A. Övgün, Black hole shadow in symmergent gravity, Phys. Dark Univ. 34, 100900 (2021)
CrossRef ADS arXiv Google scholar
[150]
S. Haroon, K. Jusufi, and M. Jamil, Shadow images of a rotating dyonic black hole with a global monopole surrounded by perfect fluid, Universe 6(2), 23 (2020)
CrossRef ADS arXiv Google scholar
[151]
M. Okyay and A. Övgün, Nonlinear electrodynamics effects on the black hole shadow. deflection angle.quasinormal modes and grey body factors, J. Cosmol. Astropart. Phys. 01, 009 (2022)
CrossRef ADS arXiv Google scholar
[152]
A. Belhaj and Y. Sekhmani, Shadows of rotating quintessential black holes in Einstein–Gauss–Bonnet gravity with a cloud of strings, Gen. Relativ. Gravit. 54, 17 (2021)
CrossRef ADS Google scholar
[153]
R. Roy, S. Vagnozzi, and L. Visinelli, Superradiance evolution of black hole shadows revisited, Phys. Rev. D 105(8), 083002 (2022)
CrossRef ADS arXiv Google scholar
[154]
S. Vagnozzi, C. Bambi, and L. Visinelli, Concerns regarding the use of black hole shadows as standard rulers, Class. Quantum Gravity 37(8), 087001 (2020)
CrossRef ADS arXiv Google scholar
[155]
K. Jusufi, M. Jamil, P. Salucci, T. Zhu, and S. Haroon, Black hole surrounded by a dark matter halo in the M87 galactic center and its identification with shadow images, Phys. Rev. D 100(4), 044012 (2019)
CrossRef ADS arXiv Google scholar
[156]
K. Jusufi, Quasinormal modes of black holes surrounded by dark matter and their connection with the shadow radius, Phys. Rev. D 101(8), 084055 (2020)
CrossRef ADS arXiv Google scholar
[157]
E. Berti, V. Cardoso, and C. M. Will, On gravitational- wave spectroscopy of massive black holes with the space interferometer LISA, Phys. Rev. D 73(6), 064030 (2006)
CrossRef ADS Google scholar
[158]
G. Franciolini, L. Hui, R. Penco, L. Santoni, and E. Trincherini, Effective field theory of black hole quasinormal modes in scalar-tensor theories, J. High Energy Phys. 2019(2), 127 (2019)
CrossRef ADS arXiv Google scholar
[159]
R. Karmakar and U. D. Goswami, Quasinormal modes, thermodynamics and shadow of black holes in Hu–Sawicki f(R) gravity theory, Eur. Phys. J. C 84(9), 969 (2024)
CrossRef ADS arXiv Google scholar
[160]
Y. Sekhmani,D. J. Gogoi,R. Myrzakulov,G. Gaetano Luciano,J. Rayimbaev, Four STU black holes shadows, Class. Quantum Gravity 41(18), 185002 (2024), arXiv: 2407.20621 [gr-qc]
[161]
G. Lambiase,D. J. Gogoi,R. C. Pantig,A. Övgün, Shadow and quasinormal modes of the rotating Einstein-Euler-Heisenberg black holes, arXiv: 2406.18300 [gr-qc] (2024)
[162]
Y. Sekhmani, D. J. Gogoi, M. Koussour, R. Myrzakulov, and J. Rayimbaev, Shadows of R-charged black holes in AdS5, Phys. Dark Univ. 44, 101442 (2024)
CrossRef ADS Google scholar
[163]
D. J. Gogoi, Violation of Hod’s conjecture and probing it with optical properties of a 5-D black hole in Einstein Gauss–Bonnet bumblebee theory of gravity, Phys. Dark Univ. 45, 101535 (2024)
CrossRef ADS arXiv Google scholar
[164]
D. J. Gogoi,S. Ponglertsakul, Constraints on quasinormal modes from black hole shadows in regular non-minimal Einstein Yang–Mills gravity, Eur. Phys. J. C 84(6), 652 (2024), arXiv: 2402.06186 [gr-qc]
[165]
R. Karmakar, D. J. Gogoi, and U. D. Goswami, Thermodynamics and shadows of GUP-corrected black holes with topological defects in Bumblebee gravity, Phys. Dark Univ. 41, 101249 (2023)
CrossRef ADS arXiv Google scholar
[166]
W. Liu,D. Wu,X. Fang,J. Jing,J. Wang, Kerr-MOG-(A)dS black hole and its shadow in scalar-tensorvector gravity theory, J. Cosmol. Astropart. Phys. 08, 035 (2024), arXiv: 2406.00579
[167]
W. Liu,D. Wu,J. Wang, Shadow of slowly rotating Kalb−Ramond black holes, arXiv: 2407.07416 (2024)
[168]
W. Liu, D. Wu, and J. Wang, Light rings and shadows of static black holes in effective quantum gravity, Phys. Lett. B 858, 139052 (2024)
CrossRef ADS arXiv Google scholar
[169]
S. W. Wei, Y. C. Zou, Y. P. Zhang, and Y. X. Liu, Constraining black hole parameters with the precessing jet nozzle of M87*, Phys. Rev. D 110(6), 064006 (2024)
CrossRef ADS arXiv Google scholar
[170]
M. X. Xu, T. Harko, and S. D. Liang, Quantum Cosmology of f(R, T) gravity, Eur. Phys. J. C 76(8), 449 (2016)
CrossRef ADS arXiv Google scholar
[171]
J. Wu, G. Li, T. Harko, and S. D. Liang, Palatini formulation of f(R, T) gravity theory, and its cosmological implications, Eur. Phys. J. C 78(5), 430 (2018)
CrossRef ADS arXiv Google scholar
[172]
T. Harko and P. H. R. S. Moraes, Comment on “Reexamining f(R, T) gravity”, Phys. Rev. D 101(10), 108501 (2020)
CrossRef ADS Google scholar
[173]
M. A. S. Pinto, T. Harko, and F. S. N. Lobo, Gravitationally induced particle production in scalar-tensor f(R, T) gravity, Phys. Rev. D 106(4), 044043 (2022)
CrossRef ADS arXiv Google scholar
[174]
M. A. S. Pinto, T. Harko, and F. S. N. Lobo, Challenging CDM with scalar-tensor f(R, T) gravity and thermodynamics of irreversible matter creation, Acta Phys. Pol. B Proc. Suppl. 16(6), A28 (2023)
CrossRef ADS Google scholar
[175]
A. Bouali, H. Chaudhary, T. Harko, F. S. N. Lobo, T. Ouali, and M. A. S. Pinto, Observational constraints and cosmological implications of scalar–tensor f(R, T) gravity, Mon. Not. R. Astron. Soc. 526(3), 4192 (2023)
CrossRef ADS arXiv Google scholar
[176]
G. I. Róis,J. T. S. S. Junior,F. S. N. Lobo,M. E. Rodrigues,T. Harko, Charged black hole solutions in f(R, T) gravity coupled to nonlinear electrodynamics, arXiv: 2412.00582 [gr-qc] (2024)
[177]
F. G. Alvarenga, M. J. S. Houndjo, A. V. Monwanou, and J. B. C. Orou, Testing some f(R, T) gravity models from energy conditions, J. Mod. Phys. 4(1), 130 (2013)
CrossRef ADS arXiv Google scholar
[178]
M. Jamil, D. Momeni, M. Raza, and R. Myrzakulov, Reconstruction of some cosmological models in f(R, T) gravity, Eur. Phys. J. C 72(4), 1999 (2012)
CrossRef ADS arXiv Google scholar
[179]
H. Shabani and M. Farhoudi, f(R, T) cosmological models in phase space, Phys. Rev. D 88(4), 044048 (2013)
CrossRef ADS arXiv Google scholar
[180]
J. W. York, Black-hole thermodynamics and the Euclidean Einstein action, Phys. Rev. D 33(8), 2092 (1986)
CrossRef ADS Google scholar
[181]
E. A. Kontou and K. Sanders, Energy conditions in general relativity and quantum field theory, Class. Quantum Gravity 37(19), 193001 (2020)
CrossRef ADS arXiv Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

B. H. would like to thank DST-INSPIRE, Ministry of Science and Technology fellowship program, Govt. of India for awarding the DST/INSPIRE Fellowship (IF220255) for financial support. Special thanks are extended to Pranjal Sarmah for his valuable suggestions regarding the fundamental concepts discussed in this manuscript. B. H. would also like to thank R. Karmakar and R. Bora for their fruitful discussion during the drafting of this manuscript.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(7171 KB)

Accesses

Citations

Detail

Sections
Recommended

/