
Phononic frequency comb in carbon nanotube mechanical resonators at very high frequency band
Nan Xu, Zi-Jian Zhang, Sheng-Jie Xue, Tong Li, Qiang Zhou, You Wang, Hai-Zhi Song, Ke Zhang, Konstantin Arutyunov, Xin-He Wang, Guang-Can Guo, Guang-Wei Deng
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 032202.
Phononic frequency comb in carbon nanotube mechanical resonators at very high frequency band
As a typical optical measurement technique, the optical frequency comb plays an irreplaceable role in spectroscopy and precision measurement. Recently, the concept of frequency combs has been adapted to the phononic domain, leading to the development of phononic frequency combs (PFCs), which have been utilized in various micro-mechanical systems. However, the realization of PFCs in flexural vibration resonators within the very high frequency (VHF) band − crucial for applications in communications and information processing − remains unachieved. In this study, we report the realization of PFC in carbon nanotube (CNT) mechanical resonators operating within the VHF band for the first time. Additionally, we observe that the system exhibits novel frequency combs and nonlinear enhancement in a two-mode mechanical resonator. Due to the broadband operation, tunable modulation depth, as well as easy fabrication and integration of one-dimensional carbon nanotubes, our investigation into PFCs within the VHF band holds promise for advancing classical and quantum precision measurement techniques, while also deepening our comprehension of nonlinear physics.
phononic frequency combs / carbon nanotubes / very high frequency
[1] |
N. Picqué and T. W. Hänsch, Frequency comb spectroscopy, Nat. Photonics 13(3), 146 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[2] |
L. Chang, S. Liu, and J. E. Bowers, Integrated optical frequency comb technologies, Nat. Photonics 16(2), 95 (2022)
CrossRef
ADS
Google scholar
|
[3] |
S. A. Diddams, K. Vahala, and T. Udem, Optical frequency combs: Coherently uniting the electromagnetic spectrum, Science 369(6501), eaay3676 (2020)
CrossRef
ADS
Google scholar
|
[4] |
S. A. Diddams, The evolving optical frequency comb, J. Opt. Soc. Am. B 27(11), B51 (2010)
CrossRef
ADS
Google scholar
|
[5] |
T. Fortier,E. Baumann, 20 years of developments in optical frequency comb technology and applications, Commun. Phys. 2(1), 153 (2019)
|
[6] |
T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Microresonator-based optical frequency combs, Science 332(6029), 555 (2011)
CrossRef
ADS
Google scholar
|
[7] |
S. T. Cundiff and J. Ye, Colloquium: Femtosecond optical frequency combs, Rev. Mod. Phys. 75(1), 325 (2003)
CrossRef
ADS
Google scholar
|
[8] |
M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, Frequency comb generation at terahertz frequencies by coherent phonon excitation in silicon, Nat. Photonics 6(4), 243 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
L. S. Cao, D. X. Qi, R. W. Peng, M. Wang, and P. Schmelcher, Phononic frequency combs through nonlinear resonances, Phys. Rev. Lett. 112(7), 075505 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
A. Ganesan, C. Do, and A. Seshia, Phononic frequency comb via intrinsic three-wave mixing, Phys. Rev. Lett. 118(3), 033903 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
I. S. Maksymov, B. Q. Huy Nguyen, A. Pototsky, and S. Suslov, Acoustic, phononic, brillouin light scattering and faraday wave-based frequency combs: Physical foundations and applications, Sensors (Basel) 22(10), 3921 (2022)
CrossRef
ADS
Google scholar
|
[12] |
R. Kubena, W. Wall, J. Koehl, and R. Joyce, Phononic comb generation in high-Q quartz resonators, Appl. Phys. Lett. 116(5), 053501 (2020)
CrossRef
ADS
Google scholar
|
[13] |
M. Goryachev, S. Galliou, and M. E. Tobar, Generation of ultralow power phononic combs, Phys. Rev. Res. 2(2), 023035 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
Q. Yang, X. Wang, R. Huan, L. Xu, Y. Xu, Z. Jiang, and X. Wei, Asymmetric phononic frequency comb in a rhombic micromechanical resonator, Appl. Phys. Lett. 118(22), 223502 (2021)
CrossRef
ADS
Google scholar
|
[15] |
X. Wang, Q. Yang, R. Huan, Z. Shi, W. Zhu, Z. Jiang, Z. Deng, and X. Wei, Frequency comb in 1:3 internal resonance of coupled micromechanical resonators, Appl. Phys. Lett. 120(17), 173506 (2022)
CrossRef
ADS
Google scholar
|
[16] |
A. Ganesan, C. Do, and A. Seshia, Phononic frequency comb via three-mode parametric resonance, Appl. Phys. Lett. 112(2), 021906 (2018)
CrossRef
ADS
Google scholar
|
[17] |
A. Ganesan, C. Do, and A. Seshia, Excitation of coupled phononic frequency combs via two-mode parametric three-wave mixing, Phys. Rev. B 97(1), 014302 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
A. Ganesan and A. Seshia, Resonance tracking in a micromechanical device using phononic frequency combs, Sci. Rep. 9(1), 9452 (2019)
CrossRef
ADS
Google scholar
|
[19] |
M. J. Seitner, M. Abdi, A. Ridolfo, M. J. Hartmann, and E. M. Weig, Parametric oscillation, frequency mixing, and injection locking of strongly coupled nanomechanical resonator modes, Phys. Rev. Lett. 118(25), 254301 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
J. S. Ochs, D. K. J. Boneß, G. Rastelli, M. Seitner, W. Belzig, M. I. Dykman, and E. M. Weig, Frequency comb from a single driven nonlinear nanomechanical mode, Phys. Rev. X 12(4), 041019 (2022)
CrossRef
ADS
Google scholar
|
[21] |
D. A. Czaplewski, C. Chen, D. Lopez, O. Shoshani, A. M. Eriksson, S. Strachan, and S. W. Shaw, Bifurcation generated mechanical frequency comb, Phys. Rev. Lett. 121(24), 244302 (2018)
CrossRef
ADS
Google scholar
|
[22] |
S. Houri, M. Asano, H. Okamoto, and H. Yamaguchi, Selfsustained libration regime in nonlinear microelectromechanical devices, Phys. Rev. Appl. 16(6), 064015 (2021)
CrossRef
ADS
Google scholar
|
[23] |
R. Singh, A. Sarkar, C. Guria, R. J. T. Nicholl, S. Chakraborty, K. I. Bolotin, and S. Ghosh, Giant tunable mechanical nonlinearity in graphene–silicon nitride hybrid resonator, Nano Lett. 20(6), 4659 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
A. Keşkekler, H. Arjmandi-Tash, P. G. Steeneken, and F. Alijani, Symmetry-breaking-induced frequency combs in graphene resonators, Nano Lett. 22(15), 6048 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[25] |
A. Chiout, F. Correia, M. Q. Zhao, A. T. C. Johnson, D. Pierucci, F. Oehler, A. Ouerghi, and J. Chaste, Multi-order phononic frequency comb generation within a MoS2 electromechanical resonator, Appl. Phys. Lett. 119(17), 173102 (2021)
CrossRef
ADS
Google scholar
|
[26] |
M. Park and A. Ansari, Formation, evolution, and tuning of frequency combs in microelectromechanical resonators, J. Microelectromech. Syst. 28(3), 429 (2019)
CrossRef
ADS
Google scholar
|
[27] |
M. H. J. de Jong, A. Ganesan, A. Cupertino, S. Gröblacher, and R. A. Norte, Mechanical overtone frequency combs, Nat. Commun. 14, 1458 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[28] |
E. Fermi,J. Pasta,S. Ulam,M. Tsingou, Studies of the nonlinear problems, Los Alamos LA-1940 (1955)
|
[29] |
M. Onorato, L. Vozella, D. Proment, and Y. V. Lvov, Route to thermalization in the α-Fermi–Pasta–Ulam system, Proc. Natl. Acad. Sci. USA 112(14), 4208 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
N. J. Zabusky, Z. Sun, and G. Peng, Measures of chaos and equipartition in integrable and nonintegrable lattices, Chaos 16(1), 013130 (2006)
CrossRef
ADS
Google scholar
|
[31] |
G. Miloshevich, R. Khomeriki, and S. Ruffo, Stochastic resonance in the Fermi–Pasta–Ulam chain, Phys. Rev. Lett. 102(2), 020602 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[32] |
S. Flach,M. V. Ivanchenko,O. I. Kanakov, q-Breathers and the Fermi–Pasta–Ulam problem, Phys. Rev. Lett. 95(6), 064102 (2005)
|
[33] |
N. Li, B. Li, and S. Flach, Energy carriers in the Fermi–Pasta–Ulam-lattice: Solitons or phonons, Phys. Rev. Lett. 105(5), 054102 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
B. Witkamp, M. Poot, and H. S. J. van der Zant, Bendingmode vibration of a suspended nanotube resonator, Nano Lett. 6(12), 2904 (2006)
CrossRef
ADS
Google scholar
|
[35] |
A. K. Hüttel, G. A. Steele, B. Witkamp, M. Poot, L. P. Kouwenhoven, and H. S. J. van der Zant, Carbon nanotubes as ultrahigh quality factor mechanical resonators, Nano Lett. 9(7), 2547 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[36] |
A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Ballistic carbon nanotube field-effect transistors, Nature 424(6949), 654 (2003)
CrossRef
ADS
Google scholar
|
[37] |
G. A. Steele, A. K. Huttel, B. Witkamp, M. Poot, H. B. Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der Zant, Strong coupling between single-electron tunneling and nanomechanical motion, Science 325(5944), 1103 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[38] |
G. Duffing, Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz und ihre Technische Bedeutung (Forced oscillators with variable eigenfrequency and their technical meaning), F. Vieweg Sohn 41–42 (in German) (1918)
|
[39] |
R. Mickens, Comments on the method of harmonic balance, J. Sound Vibrat. 94(3), 456 (1984)
CrossRef
ADS
Google scholar
|
[40] |
L. Liu,J. Thomas,E. Dowell,P. Attar,K. Hall, A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator, J. Comput. Phys. 215(1), 298 (2006)
|
[41] |
V. Agarwal, X. Zheng, and B. Balachandran, Influence of noise on frequency responses of softening Duffing oscillators, Phys. Lett. A 382(46), 3355 (2018)
CrossRef
ADS
Google scholar
|
[42] |
J. R. Ackerhalt,H. W. Galbraith,P. W. Milonni, Onset of chaos in Duffing oscillator systems, in: Coherence and Quantum Optics V, Springer, Boston, 1984
|
[43] |
X. L. Leng, C. L. Wu, X. P. Ma, G. Meng, and T. Fang, Bifurcation and chaos analysis of stochastic Duffing system under harmonic excitations, Nonlinear Dyn. 42(2), 185 (2005)
CrossRef
ADS
Google scholar
|
[44] |
M. J. Brennan, I. Kovacic, A. Carrella, and T. P. Waters, On the jump-up and jump-down frequencies of the Duffing oscillator, J. Sound Vibrat. 318(4-5), 1250 (2008)
CrossRef
ADS
Google scholar
|
[45] |
A. H. Nayfeh,D. T. Mook, Nonlinear Oscillations, Wiley, Hoboken, 2008
|
[46] |
I. Kovacic,M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behaviour, Wiley, Hoboken, 2011
|
[47] |
J. Warminski,S. Lenci,P. M. Cartmell,G. Rega,M. Wiercigroch, Nonlinear Dynamic Phenomena in Mechanics, Springer, Berlin, 2012
|
[48] |
C. G. L. Bøttcher, S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, U. Vool, S. D. Bartlett, and A. Yacoby, Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet−triplet spin qubit, Nat. Commun. 13, 4773 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[49] |
D. Hälg, T. Gisler, E. C. Langman, S. Misra, O. Zilberberg, A. Schliesser, C. L. Degen, and A. Eichler, Strong parametric coupling between two ultracoherent membrane modes, Phys. Rev. Lett. 128(9), 094301 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[50] |
F. E. Onah, B. R. Jaramillo-Avila, F. H. Maldonado-Villamizar, and B. M. Rodríguez-Lara, Optical coupling control of isolated mechanical resonators, Sci. Rep. 14(1), 941 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[51] |
D. W. Liu, Y. Wu, and L. G. Si, Magnon cat states induced by photon parametric coupling, Phys. Rev. Appl. 21(4), 044018 (2024)
CrossRef
ADS
Google scholar
|
[52] |
S. Marti, U. von Lupke, O. Joshi, Y. Yang, M. Bild, A. Omahen, Y. Chu, and M. Fadel, Quantum squeezing in a nonlinear mechanical oscillator, Nat. Phys. 20(9), 1448 (2024)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |