Phononic frequency comb in carbon nanotube mechanical resonators at very high frequency band

Nan Xu, Zi-Jian Zhang, Sheng-Jie Xue, Tong Li, Qiang Zhou, You Wang, Hai-Zhi Song, Ke Zhang, Konstantin Arutyunov, Xin-He Wang, Guang-Can Guo, Guang-Wei Deng

Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 032202.

PDF(2077 KB)
PDF(2077 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 032202. DOI: 10.15302/frontphys.2025.032202
RESEARCH ARTICLE

Phononic frequency comb in carbon nanotube mechanical resonators at very high frequency band

Author information +
History +

Abstract

As a typical optical measurement technique, the optical frequency comb plays an irreplaceable role in spectroscopy and precision measurement. Recently, the concept of frequency combs has been adapted to the phononic domain, leading to the development of phononic frequency combs (PFCs), which have been utilized in various micro-mechanical systems. However, the realization of PFCs in flexural vibration resonators within the very high frequency (VHF) band − crucial for applications in communications and information processing − remains unachieved. In this study, we report the realization of PFC in carbon nanotube (CNT) mechanical resonators operating within the VHF band for the first time. Additionally, we observe that the system exhibits novel frequency combs and nonlinear enhancement in a two-mode mechanical resonator. Due to the broadband operation, tunable modulation depth, as well as easy fabrication and integration of one-dimensional carbon nanotubes, our investigation into PFCs within the VHF band holds promise for advancing classical and quantum precision measurement techniques, while also deepening our comprehension of nonlinear physics.

Graphical abstract

Keywords

phononic frequency combs / carbon nanotubes / very high frequency

Cite this article

Download citation ▾
Nan Xu, Zi-Jian Zhang, Sheng-Jie Xue, Tong Li, Qiang Zhou, You Wang, Hai-Zhi Song, Ke Zhang, Konstantin Arutyunov, Xin-He Wang, Guang-Can Guo, Guang-Wei Deng. Phononic frequency comb in carbon nanotube mechanical resonators at very high frequency band. Front. Phys., 2025, 20(3): 032202 https://doi.org/10.15302/frontphys.2025.032202

References

[1]
N. Picqué and T. W. Hänsch, Frequency comb spectroscopy, Nat. Photonics 13(3), 146 (2019)
CrossRef ADS arXiv Google scholar
[2]
L. Chang, S. Liu, and J. E. Bowers, Integrated optical frequency comb technologies, Nat. Photonics 16(2), 95 (2022)
CrossRef ADS Google scholar
[3]
S. A. Diddams, K. Vahala, and T. Udem, Optical frequency combs: Coherently uniting the electromagnetic spectrum, Science 369(6501), eaay3676 (2020)
CrossRef ADS Google scholar
[4]
S. A. Diddams, The evolving optical frequency comb, J. Opt. Soc. Am. B 27(11), B51 (2010)
CrossRef ADS Google scholar
[5]
T. Fortier,E. Baumann, 20 years of developments in optical frequency comb technology and applications, Commun. Phys. 2(1), 153 (2019)
[6]
T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Microresonator-based optical frequency combs, Science 332(6029), 555 (2011)
CrossRef ADS Google scholar
[7]
S. T. Cundiff and J. Ye, Colloquium: Femtosecond optical frequency combs, Rev. Mod. Phys. 75(1), 325 (2003)
CrossRef ADS Google scholar
[8]
M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, Frequency comb generation at terahertz frequencies by coherent phonon excitation in silicon, Nat. Photonics 6(4), 243 (2012)
CrossRef ADS arXiv Google scholar
[9]
L. S. Cao, D. X. Qi, R. W. Peng, M. Wang, and P. Schmelcher, Phononic frequency combs through nonlinear resonances, Phys. Rev. Lett. 112(7), 075505 (2014)
CrossRef ADS arXiv Google scholar
[10]
A. Ganesan, C. Do, and A. Seshia, Phononic frequency comb via intrinsic three-wave mixing, Phys. Rev. Lett. 118(3), 033903 (2017)
CrossRef ADS arXiv Google scholar
[11]
I. S. Maksymov, B. Q. Huy Nguyen, A. Pototsky, and S. Suslov, Acoustic, phononic, brillouin light scattering and faraday wave-based frequency combs: Physical foundations and applications, Sensors (Basel) 22(10), 3921 (2022)
CrossRef ADS Google scholar
[12]
R. Kubena, W. Wall, J. Koehl, and R. Joyce, Phononic comb generation in high-Q quartz resonators, Appl. Phys. Lett. 116(5), 053501 (2020)
CrossRef ADS Google scholar
[13]
M. Goryachev, S. Galliou, and M. E. Tobar, Generation of ultralow power phononic combs, Phys. Rev. Res. 2(2), 023035 (2020)
CrossRef ADS arXiv Google scholar
[14]
Q. Yang, X. Wang, R. Huan, L. Xu, Y. Xu, Z. Jiang, and X. Wei, Asymmetric phononic frequency comb in a rhombic micromechanical resonator, Appl. Phys. Lett. 118(22), 223502 (2021)
CrossRef ADS Google scholar
[15]
X. Wang, Q. Yang, R. Huan, Z. Shi, W. Zhu, Z. Jiang, Z. Deng, and X. Wei, Frequency comb in 1:3 internal resonance of coupled micromechanical resonators, Appl. Phys. Lett. 120(17), 173506 (2022)
CrossRef ADS Google scholar
[16]
A. Ganesan, C. Do, and A. Seshia, Phononic frequency comb via three-mode parametric resonance, Appl. Phys. Lett. 112(2), 021906 (2018)
CrossRef ADS Google scholar
[17]
A. Ganesan, C. Do, and A. Seshia, Excitation of coupled phononic frequency combs via two-mode parametric three-wave mixing, Phys. Rev. B 97(1), 014302 (2018)
CrossRef ADS arXiv Google scholar
[18]
A. Ganesan and A. Seshia, Resonance tracking in a micromechanical device using phononic frequency combs, Sci. Rep. 9(1), 9452 (2019)
CrossRef ADS Google scholar
[19]
M. J. Seitner, M. Abdi, A. Ridolfo, M. J. Hartmann, and E. M. Weig, Parametric oscillation, frequency mixing, and injection locking of strongly coupled nanomechanical resonator modes, Phys. Rev. Lett. 118(25), 254301 (2017)
CrossRef ADS arXiv Google scholar
[20]
J. S. Ochs, D. K. J. Boneß, G. Rastelli, M. Seitner, W. Belzig, M. I. Dykman, and E. M. Weig, Frequency comb from a single driven nonlinear nanomechanical mode, Phys. Rev. X 12(4), 041019 (2022)
CrossRef ADS Google scholar
[21]
D. A. Czaplewski, C. Chen, D. Lopez, O. Shoshani, A. M. Eriksson, S. Strachan, and S. W. Shaw, Bifurcation generated mechanical frequency comb, Phys. Rev. Lett. 121(24), 244302 (2018)
CrossRef ADS Google scholar
[22]
S. Houri, M. Asano, H. Okamoto, and H. Yamaguchi, Selfsustained libration regime in nonlinear microelectromechanical devices, Phys. Rev. Appl. 16(6), 064015 (2021)
CrossRef ADS Google scholar
[23]
R. Singh, A. Sarkar, C. Guria, R. J. T. Nicholl, S. Chakraborty, K. I. Bolotin, and S. Ghosh, Giant tunable mechanical nonlinearity in graphene–silicon nitride hybrid resonator, Nano Lett. 20(6), 4659 (2020)
CrossRef ADS arXiv Google scholar
[24]
A. Keşkekler, H. Arjmandi-Tash, P. G. Steeneken, and F. Alijani, Symmetry-breaking-induced frequency combs in graphene resonators, Nano Lett. 22(15), 6048 (2022)
CrossRef ADS arXiv Google scholar
[25]
A. Chiout, F. Correia, M. Q. Zhao, A. T. C. Johnson, D. Pierucci, F. Oehler, A. Ouerghi, and J. Chaste, Multi-order phononic frequency comb generation within a MoS2 electromechanical resonator, Appl. Phys. Lett. 119(17), 173102 (2021)
CrossRef ADS Google scholar
[26]
M. Park and A. Ansari, Formation, evolution, and tuning of frequency combs in microelectromechanical resonators, J. Microelectromech. Syst. 28(3), 429 (2019)
CrossRef ADS Google scholar
[27]
M. H. J. de Jong, A. Ganesan, A. Cupertino, S. Gröblacher, and R. A. Norte, Mechanical overtone frequency combs, Nat. Commun. 14, 1458 (2023)
CrossRef ADS arXiv Google scholar
[28]
E. Fermi,J. Pasta,S. Ulam,M. Tsingou, Studies of the nonlinear problems, Los Alamos LA-1940 (1955)
[29]
M. Onorato, L. Vozella, D. Proment, and Y. V. Lvov, Route to thermalization in the α-Fermi–Pasta–Ulam system, Proc. Natl. Acad. Sci. USA 112(14), 4208 (2015)
CrossRef ADS arXiv Google scholar
[30]
N. J. Zabusky, Z. Sun, and G. Peng, Measures of chaos and equipartition in integrable and nonintegrable lattices, Chaos 16(1), 013130 (2006)
CrossRef ADS Google scholar
[31]
G. Miloshevich, R. Khomeriki, and S. Ruffo, Stochastic resonance in the Fermi–Pasta–Ulam chain, Phys. Rev. Lett. 102(2), 020602 (2009)
CrossRef ADS arXiv Google scholar
[32]
S. Flach,M. V. Ivanchenko,O. I. Kanakov, q-Breathers and the Fermi–Pasta–Ulam problem, Phys. Rev. Lett. 95(6), 064102 (2005)
[33]
N. Li, B. Li, and S. Flach, Energy carriers in the Fermi–Pasta–Ulam-lattice: Solitons or phonons, Phys. Rev. Lett. 105(5), 054102 (2010)
CrossRef ADS arXiv Google scholar
[34]
B. Witkamp, M. Poot, and H. S. J. van der Zant, Bendingmode vibration of a suspended nanotube resonator, Nano Lett. 6(12), 2904 (2006)
CrossRef ADS Google scholar
[35]
A. K. Hüttel, G. A. Steele, B. Witkamp, M. Poot, L. P. Kouwenhoven, and H. S. J. van der Zant, Carbon nanotubes as ultrahigh quality factor mechanical resonators, Nano Lett. 9(7), 2547 (2009)
CrossRef ADS arXiv Google scholar
[36]
A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Ballistic carbon nanotube field-effect transistors, Nature 424(6949), 654 (2003)
CrossRef ADS Google scholar
[37]
G. A. Steele, A. K. Huttel, B. Witkamp, M. Poot, H. B. Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der Zant, Strong coupling between single-electron tunneling and nanomechanical motion, Science 325(5944), 1103 (2009)
CrossRef ADS arXiv Google scholar
[38]
G. Duffing, Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz und ihre Technische Bedeutung (Forced oscillators with variable eigenfrequency and their technical meaning), F. Vieweg Sohn 41–42 (in German) (1918)
[39]
R. Mickens, Comments on the method of harmonic balance, J. Sound Vibrat. 94(3), 456 (1984)
CrossRef ADS Google scholar
[40]
L. Liu,J. Thomas,E. Dowell,P. Attar,K. Hall, A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator, J. Comput. Phys. 215(1), 298 (2006)
[41]
V. Agarwal, X. Zheng, and B. Balachandran, Influence of noise on frequency responses of softening Duffing oscillators, Phys. Lett. A 382(46), 3355 (2018)
CrossRef ADS Google scholar
[42]
J. R. Ackerhalt,H. W. Galbraith,P. W. Milonni, Onset of chaos in Duffing oscillator systems, in: Coherence and Quantum Optics V, Springer, Boston, 1984
[43]
X. L. Leng, C. L. Wu, X. P. Ma, G. Meng, and T. Fang, Bifurcation and chaos analysis of stochastic Duffing system under harmonic excitations, Nonlinear Dyn. 42(2), 185 (2005)
CrossRef ADS Google scholar
[44]
M. J. Brennan, I. Kovacic, A. Carrella, and T. P. Waters, On the jump-up and jump-down frequencies of the Duffing oscillator, J. Sound Vibrat. 318(4-5), 1250 (2008)
CrossRef ADS Google scholar
[45]
A. H. Nayfeh,D. T. Mook, Nonlinear Oscillations, Wiley, Hoboken, 2008
[46]
I. Kovacic,M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behaviour, Wiley, Hoboken, 2011
[47]
J. Warminski,S. Lenci,P. M. Cartmell,G. Rega,M. Wiercigroch, Nonlinear Dynamic Phenomena in Mechanics, Springer, Berlin, 2012
[48]
C. G. L. Bøttcher, S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, U. Vool, S. D. Bartlett, and A. Yacoby, Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet−triplet spin qubit, Nat. Commun. 13, 4773 (2021)
CrossRef ADS arXiv Google scholar
[49]
D. Hälg, T. Gisler, E. C. Langman, S. Misra, O. Zilberberg, A. Schliesser, C. L. Degen, and A. Eichler, Strong parametric coupling between two ultracoherent membrane modes, Phys. Rev. Lett. 128(9), 094301 (2022)
CrossRef ADS arXiv Google scholar
[50]
F. E. Onah, B. R. Jaramillo-Avila, F. H. Maldonado-Villamizar, and B. M. Rodríguez-Lara, Optical coupling control of isolated mechanical resonators, Sci. Rep. 14(1), 941 (2024)
CrossRef ADS arXiv Google scholar
[51]
D. W. Liu, Y. Wu, and L. G. Si, Magnon cat states induced by photon parametric coupling, Phys. Rev. Appl. 21(4), 044018 (2024)
CrossRef ADS Google scholar
[52]
S. Marti, U. von Lupke, O. Joshi, Y. Yang, M. Bild, A. Omahen, Y. Chu, and M. Fadel, Quantum squeezing in a nonlinear mechanical oscillator, Nat. Phys. 20(9), 1448 (2024)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary material

Datails of single-mode phonon frequency comb, boundary condition for the existence of phononic frequency combs, and frequency response of two-mode phononic frequency comb. See: https://doi.org/10.15302/frontphys.2025.032202.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFA1405900), the National Natural Science Foundation of China (Nos. U2441217, 12074058, and 62174010), and Sichuan Science and Technology Program (Nos. 2024YFHZ0372, 2022YFSY0062, 2022YFSY0063, and 2022YFSY0061), and sponsored by Beijing Nova Program.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(2077 KB)

Accesses

Citations

Detail

Sections
Recommended

/